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	 Glycogen and moisture contents are associated with palatability, especially the flavor of 
Japanese wagyu beef samples.  In this study, near-infrared (NIR) absorbance spectroscopy 
(12500–4000 cm−1) was carried out to predict the glycogen and moisture contents in Japanese 
wagyu beef.  Calibration and prediction models were established by partial least-squares 
regression (PLSR) between the measured reference glycogen and moisture contents and the 
spectral data.  Different spectral preprocessing methods were used, and the loading coefficient 
obtained from PLSR models was employed to select feature spectra.  As a result, the prediction 
model of glycogen with the selected spectral region of 9000–4300 cm−1 after smoothing-
standard normalized variate (SNV) yielded optimum results with a determination coefficient 
(Rp

2) of 0.415, a root-mean-squared error of prediction (RMSEP) set of 0.386 mg/g, and a ratio 
of prediction to deviation (RPD) of 1.218.  In addition, the prediction model of moisture content 
in the full spectral region of 12500–4000 cm−1 after smoothing-multiplicative scatter correction 
(MSC) yielded optimum results with Rp

2 of 0.795, RMSEP of 2.669%, and RPD of 2.008.  The 
results of this study demonstrated that NIR spectroscopy offers great potential for the prediction 
of glycogen and moisture contents in Japanese wagyu beef samples.

1.	 Introduction

	 The palatability of beef can be attributed to three primary factors, namely, tenderness, 
juiciness, and flavor.(1)  In Japan, the beef marbling standard plays a critical role in evaluating 
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meat quality.(2)  Several researchers have shown that high marbling levels have a positive 
effect on Japanese consumers’ preference owing to the improvement in beef quality such as 
tenderness.(2–7)  This is consistent with the conclusion that tenderness is the most important 
factor affecting beef palatability.(8–11)  However, additional studies have shown that when 
tenderness is at an acceptable level, flavor becomes the next most important factor affecting the 
beef preference of consumers.(10–15)

	 Flavor is a complex concept, which is composed of taste, odor, and the interaction of these 
factors.  In our previous work, a sensory panel test was used to determine the relationship 
between  sensory attributes (e.g., sweetness, fattiness, aroma, tenderness, flavor, and overall 
evaluation) and chemical composition characteristics (e.g., moisture, protein, free amino acid, 
glycogen, and fatty acid contents) of Japanese wagyu beef by the simmering method.(16)  We 
demonstrated that the ‘flavor’ of sensory attributes was associated with glycogen and moisture 
contents.  It has been widely reported that pre rigor muscle glycogen content has a negative 
curvilinear relationship with ultimate pH,(17) which is an indicator of the final palatability 
of meat.(18,19)  In addition, the glycogen content in the muscle is related to the amounts of 
monosaccharides such as glucose and fructose after slaughter, which affect the development 
of meat flavor via the Maillard reaction; therefore, glycogen contributes to beef palatability.(20)  
Moisture content is often used to assess meat quality.(21)  It also has a strong relationship 
with the contents of lipids that affect sensory attributes such as flavor, juiciness, texture, and 
appearance.(22)  Therefore, to satisfy an increasing demand for evaluating meat quality by either 
the meat processing industry or consumers, fast, accurate, and nondestructive methods are 
urgently required.
	 In recent years, near-infrared (NIR) spectroscopy, which is based on optical measurements 
of reflectance, transmittance, and interactance, has been considered as a nondestructive, fast, 
convenient, inexpensive, and precise technique.  NIR spectroscopy combined with various 
multivariable data processing techniques has been effectively employed.  Applications of the 
NIR technique to the evaluation of meat quality have been reviewed.(23)  The NIR technique has 
the potential of detecting meat adulteration,(24,25) assessing meat microbial spoilage,(26,27) and 
estimating meat quality.(28,29)

	 Nowadays, several research studies on Japanese wagyu beef have shown that NIR 
spectroscopy can be applied to predict the fat content and quantify the fatty acid composition.  
Kobayashi et al. have demonstrated the correlation between fat content and spectral information 
in Japanese raw beef.(30)  Piao et al. predicted the monounsaturated fatty acid (MUFA), oleic 
acid, and saturated fatty acid (SFA) compositions in Japanese Black cattle with the coefficients 
of determination of 0.69, 0.64, and 0.67, respectively.(31)  The reason why many researchers 
focus on the fat in Japanese wagyu beef is that fat is an important factor that affects the overall 
palatability and taste.  However, according to Suzuki et al., in Japanese Black cattle, the 
chemical composition characteristics, such as the amounts of sugar (e.g., glycogen, glucose, and 
ribose) and ATP-related compounds, are related to the ‘overall evaluation’, and at the same time, 
the amounts of ATP-related compounds correlate significantly with the ‘umami intensity’.(32)  
The conclusion that the content and composition of fat are not the only indexes for the taste of 
Japanese Black cattle was suggested.  Our previous work where glycogen and moisture contents 
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affected the flavor and tenderness has a similar conclusion.(16)  In addition, to the best of our 
knowledge, there has been little research so far on the measurement of glycogen and moisture 
contents for the quality evaluation of Japanese wagyu beef based on NIR spectroscopy.
	 Therefore, the main objective of this study was to investigate the potential of using NIR 
spectroscopy and multivariable data processing methods for the rapid analysis of glycogen and 
moisture contents in Japanese wagyu beef for quality evaluation.  The specific objectives are 
as follows: (1) to obtain spectral information of Japanese wagyu beef in the 12500–4000 cm−1 
region, (2) to establish calibration and prediction models based on spectral data and measured 
glycogen and moisture contents based on partial least-squares regression (PLSR), and (3) to 
select the feature spectra linked to glycogen and moisture contents and evaluate the accuracy of 
prediction models using these feature spectra.

2.	 Materials and Methods

2.1	 Sample preparation

	 The Japanese wagyu beef samples analyzed in this study were obtained from Tottori 
Prefecture, Japan.  Carcass characteristics of meat located between the sixth and seventh ribs (the 
longissimus thoracis muscle) were evaluated following the standards of the Japan Meat Grading 
Association,(33) and the quality grades of meat were higher than Grade 4 (4 or 5).  
	 Twenty-four carcasses were aged at 0 °C for 19 days.  One meat sample of the longissimus 
thoracis muscle was collected from each of the 24 carcasses, minced, and stored at −30 °C until 
analysis.  Each meat sample has an identification number.  Before the chemical analyses of 
glycogen and moisture contents and the measurement by FT-NIR, the samples were thawed at 
4 °C for 4 h.

2.2	 Determination of glycogen and moisture contents

	 The glycogen content was determined by the iodine binding method according to 
Dreiling et al.(34)  About 0.5 g of meat sample was homogenized with 5 ml of cold 7% perchloric 
acid for 30 s at 30000 rpm.  Samples were subsequently left for 10 min at room temperature 
and then filtered with filter paper of 55 µm pore size.  The fraction including glycogen was 
collected and used for glycogen measurement.  The glycogen content was determined using a 
spectrophotometer (Shimadzu, UV-1200V, Japan) at 460 nm and calculated as milligrams per 
gram of raw meat.
	 Moisture content was measured using a ProFat system (CEM, ProFat TM Raw Meat Fat 
Analyzer, USA) according to the method of the Association of Official Analytical Chemists 
(AOAC, 2008.06).  The system was developed to combine microwave drying with nuclear 
magnetic resonance.  A 1.5 g sample was weighed in the system, where its moisture content was 
analyzed by determining the weight loss.  Moisture content was calculated as w/w%.
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2.3	 NIR spectroscopy measurements

	 Prior to acquiring the spectra, a 3 g sample was weighed.  NIR spectra were collected using 
a FT-NIR spectrometer (PerkinElmer, Frontier NIR Spectrometer, USA), equipped with an 
NIR reflection accessory (PerkinElmer, NIRA, USA) for diffuse reflectance measurements.  
The samples were directly measured by diffuse reflectance without any preparation at ambient 
temperature.  Each spectrum was the average of 16 scans at 8 cm−1 resolution over the range 
of 12500 to 4000 cm−1.  The absorbance spectra were acquired as logarithmically transformed 
reflectance log(1/R).

2.4	 Data analysis

2.4.1	 Spectral preprocessing

	 To reduce sample-to-sample variability due to scatter and optical interference and improve 
the predictive capability of models, various mathematical preprocessing techniques including 
Savitzky–Golay (SG) smoothing, multiplicative scatter correction (MSC), and standard 
normalized variate (SNV) were used before data modeling.  The SG smoothing method can 
remove high-frequency noise, smooth data, and improve the signal-to-noise ratio of the spectral 
curve while retaining important information.(35)  MSC is adopted as a widely used spectral 
preprocessing technique that can eliminate direct reflection and noise in the diffuse reflection 
and separate multiplicative interferences such as scatter and particle size at the same time.(36)  
Identically, SNV is used to correct baseline drift and eliminate undesirable scattering effects 
from the data matrix.(37)

	 To optimize the accuracy of models, in this work, the spectral preprocessing methods 
performed were nontreatment, MSC, SNV, and SG smoothing with a second-order polynomial 
and window sizes of 23 points, as well as combinations of two preprocessing methods.  Then, 
the preprocessed spectra were used for modelling.

2.4.2	 Multivariable data modelling

	 Outliers are samples not fitting in the model.  Outlier detection is important before modelling 
because even a single outlier may affect the robustness of the model and lead to incorrect 
conclusions.  In this study, principal component analysis (PCA) was performed to identify and, 
if necessary, eliminate spectral outliers using Hotelling’s T2 statistics with a 95% confidence 
threshold.(38) 
	 PLSR models, as a widely used and highly effective analysis, are developed between the 
relation preprocessed spectra (X-matrix) and physical and chemical parameters (Y-matrix).  The 
procedure of PLSR modelling has 2 steps.  The first is the development of calibration models, 
which are established on the basis of calibration data.  To ensure that the calibration models 
obtained are not overfitting, a cross validation using the leave-one-out method is considered.  
The number of latent variables (LVs) to be selected in PLSR models can also be determined 
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by the above cross validation.(39)  The second is the development of prediction models based 
on validation methods.  Prediction models are used to examine the reliability of the calibration 
models and ensure the related calibration models can work.  Two types of validation methods 
are widely used for developing prediction models.  One is test-set validation, where totally 
new and external data will be used for prediction.  The other is cross validation, where part of 
the calibration data will be used for prediction.  The common methods of cross validation are 
full cross-validation and leave-one-out cross validation.  In this study, owing to the restricted 
number of samples, after calibration models were developed, the leave-one-out cross validation 
was simultaneously used for the validation of calibration models and the establishment of 
prediction models of glycogen and moisture contents.
	 The performance characteristics of PLSR models were evaluated in terms of the 
determination coefficients for calibration (Rc

2) and prediction (Rp
2), the root-mean-squared 

errors of calibration (RMSEC) and prediction (RMSEP), and the ratio of prediction to deviation 
(RPD).  RPD is calculated using the ratio of standard deviation (SD) of the reference values 
over the RMSEP.  Generally, good models should have higher Rc

2 and Rp
2 values and lower 

RMSEC and RMSEP values.  The small difference between RMSEC and RMSEP indicates the 
robustness of the models.  In addition, an RPD value above 2 is considered to be a reasonably 
good prediction, and greater than 3 means an excellent prediction.(40)

2.4.3	 Feature spectral selection

	 Feature spectral selection is important for quantitative analysis because it eliminates 
irrelevant wavelengths and selects the informative ones for effective analysis.  In this study, 
loading coefficients in the PLSR model were used to select the wavelengths that most highly 
affect glycogen and moisture content prediction in Japanese wagyu beef.  In general, the loading 
coefficient has a profile similar to the nontreated spectral data and may highlight regions of 
high importance.  Using the feature spectra, new PLSR models were established.  All data 
analysis procedures used throughout the work were implemented using the Unscrambler X 10.4 
software (CAMO Software, X 10.5, Norway).

3.	 Results and Discussion

3.1	 Reference measurement of glycogen and moisture contents

	 Glycogen as the main form of carbohydrate storage in animals is one of the important 
chemical parameters that determine meat palatability.(41,42)  A previous study of beef sensory 
evaluation demonstrated that a high glycogen content is associated with improved tenderness, 
bright red color, and enhanced flavor;(43) therefore, glycogen content has a positive effect on 
beef palatability.  Additionally, it is known that moisture is the most abundant component in 
muscle and is essential for beef quality.  Previous research showed that the moisture content 
negatively correlated with the fat content and affected the texture of Japanese black steers.(2)  
Because of its relationship with the contents of lipids, moisture content also affects the factors 
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affecting palatability such as juiciness and flavor.(22)  The reference results of glycogen and 
moisture contents for Japanese wagyu beef analyzed in this study are presented in Table 1.  
The glycogen content of 24 samples ranged between 0.52 and 2.35 mg/g, which were in good 
agreement with the results of Komatsu et al.(20)

3.2	 Spectral data analysis

	 In the 12500–4000 cm−1 region, the original absorbance spectra of Japanese wagyu beef 
samples are shown in Fig. 1.  In general, NIR spectra are sensitive to the fundamental vibrations 
of C–H, O–H, S–H, or N–H bonds in organic compounds, and the absorption peaks are 
associated with the vibrations of these functional groups.(44)  According to a previous study, 
the peaks in the NIR region at approximately 6800 and 5100 cm−1 are probably related to 
the O–H stretching in moisture.(45)  In addition, Brown reported that wavelengths located at 
1420 nm (7040 cm−1), 1580 nm (6330 cm−1), 1750 nm (5710 cm−1), and 1690 nm (5910 cm−1) 
were associated with the absorption of glycogen when using visible–NIR spectroscopy for the 
quantitative analysis of oyster samples.(46)  In our work, only the absorption peaks of 5710 and 
5910 cm−1 were observed.  This may be because oyster samples have a higher glycogen content 
than beef samples.
	 To reduce the effects of sample preparation, particle size of samples, and light scatter, 
spectral preprocessing methods were performed.  After preprocessing, new spectra with less 
variation and scatter effects were obtained.  PCA was used on nontreated spectral data and 
preprocessing spectral data to detect outliers.  Hotelling’s T2 values of each individual sample 
spectra were calculated to detect outliers using a 95% confidence threshold.  The spectra of the 
same sample with nontreated and smoothing-treated methods were identified as the outlier and 
removed before PLSR modelling.  It may be explained by the fact that the moisture content of 
the sample as the outlier was 30.97%.  Taking moisture content into consideration, this sample 
was also an outlier in a total of 24 beef samples.

Table 1
Reference measurement of glycogen and moisture 
contents of 24 Japanese wagyu beef samples.

Mean SD Min. Max.
Glycogen (mg/g) 1.16 0.47 0.52 2.35
Moisture (w/w%) 40.95 5.36 30.97 51.64

Fig. 1.	 (Color online) Nontreated spectra of 24 
Japanese wagyu beef samples. Labelled spectra were 
identified as an outlier using Hotelling’s T2 statistics 
with a 95% confidence threshold.
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3.3	 Prediction of glycogen and moisture contents based on full spectra

	 The prediction of glycogen and moisture contents was performed using PLSR models with 
nontreated spectra and the spectra preprocessed by different methods in the full spectral region 
of 12500–4000 cm−1.  The results are shown at Table 2.
	 The best PLSR model for glycogen prediction from 12500 to 4000 cm−1 was developed 
using smoothing-SNV-treated spectra.  To visualize graphically the performance of this model, 
the measured reference and predicted values for calibration and prediction sets are shown in 
Fig. 2(a).  It is shown that the best PLSR model for glycogen prediction has the highest Rp

2 
value of 0.403, the lowest RMSEP value of 0.386 mg/g, and an RPD value of 1.218.  The above-
mentioned results of this study with  an Rp

2 value of 0.403 in the prediction set were more 

Table 2
Performance comparison of PLSR models for predicting glycogen and moisture contents based on full spectral data 
preprocessed by different methods.

Preprocessing Spectral region
(cm−1) LV Calibration Prediction RPDRc

2 RMSEC Rp
2 RMSEC

Glycogen 
(mg/g)

Nontreated 12500–4000 4 0.518 0.318 0.313 0.397 1.184
Smoothing 12500–4000 4 0.518 0.318 0.321 0.388 1.211

SNV 12500–4000 5 0.532 0.313 0.344 0.395 1.190
MSC 12500–4000 2 0.475 0.332 0.386 0.386 1.218

Smoothing-SNV 12500–4000 2 0.474 0.332 0.403 0.386 1.218
Smoothing-MSC 12500–4000 2 0.530 0.314 0.237 0.399 1.178

Moisture 
(w/w%)

Nontreated 12500–4000 5 0.871 1.884 0.790 2.618 2.047
Smoothing 12500–4000 5 0.871 1.888 0.758 2.568 2.087

SNV 12500–4000 3 0.831 2.160 0.783 2.685 1.996
MSC 12500–4000 3 0.831 2.163 0.751 2.713 1.976

Smoothing-SNV 12500–4000 3 0.830 2.164 0.735 2.716 1.973
Smoothing-MSC 12500–4000 3 0.830 2.166 0.795 2.669 2.008

(a) (b)

Fig. 2.	 (Color online) Best performance for predicting (a) glycogen and (b) moisture contents based on full spectra 
preprocessed by different methods.
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accurate than those of the previous study by Lomiwes et al. with an Rp
2 value of 0.22 for the 

quantitative analysis of glycogen in beef samples.(47)  However, Rosenvold et al. measured 102 
samples of beef M. longissimus lumborum using NIR spectroscopy and a prediction model, 
and an Rp

2 value of 0.72 was obtained.(48)  The RPD value of the best PLSR model for glycogen 
content prediction was 1.218, which also indicated that the model was not very robust.  These 
results are partly due to the limited number of beef samples.  Therefore, additional research 
studies with more samples and more scanning points in the same beef sample are needed to 
decrease the sample variability, thereby improving the model performance.
	 The performance characteristics of PLSR models for moisture content prediction based on 
sprectra from 12500 to 4000 cm−1 preprocessed by different methods were very similar.  The 
preprocessing methods SNV and MSC produced similar results, mainly due to the correction of 
the baseline drift and the decrease in scattering for nontreated spectra.  The best PLSR model 
for predicting moisture content was developed using smoothing-MSC-treated spectra and gave 
results with Rp

2 of 0.795, RMSEC of 2.166%, and RMSEP of 2.669%, as shown in Fig. 2(b).  
The RPD value was 2.008, meaning that the model provided a reasonably good prediction.  The 
results indicated that the prediction of moisture content by FT-NIR spectroscopy is feasible.

3.4	 Prediction of glycogen and moisture contents based on feature spectra

	 In an NIR spectrum, there are large numbers of overtones and combination bands.  To 
reduce the amount of input data, it is important to obtain the feature spectrum.  In this study, 
the loading coefficient resulting from PLSR models was employed to select important spectra 
aiming to establish simplified PLSR models.  As an example, for predicting the glycogen content 
of Japanese wagyu beef samples using nontreated spectra in the 12500–4000 cm−1 region, 
the relationship between wavenumber and the loading coefficients of the first three principal 
components is shown in Fig. 3.  The contribution rates of the first three principal components 
reached 96%, which could explain most information from the original data.  Therefore, the 
feature spectra were selected according to the changes between the maximum and minimum 

Fig. 3.	 (Color online) Plot of loading coefficient based on the prediction of glycogen content based on nontreated 
spectra in 12500–4000 cm−1 region.
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values of the loading coefficient.  Furthermore, PLS analysis was carried out on the basis of the 
above selected spectra.  As shown in Fig. 3, for nontreated spectra, the region between 9000 and 
4300 cm−1 was selected as feature spectra for establishing new quantitative analysis models to 
predict glycogen content.  The same analysis method was used for selecting the feature spectra 
from other spectra preprocessed by different methods.  The performances of PLSR models for 
predicting glycogen and moisture contents based on feature spectra preprocessed by different 
methods are shown in Table 3.
	 For glycogen prediction, although not very satisfactory results were obtained, the best 
PLSR model based on feature spectra with the highest Rp

2 value of 0.415, the lowest RMSEP 
value of 0.386 mg/g, and an RPD value of 1.218 was obtained.  These results were similar to 
those obtained using the best PLSR model based on full spectra.  By analyzing the moisture 
content, the performance characteristics of PLSR models based on full spectra were better than 
those of PLSR models based on feature spectra.  Through the analysis results, although the 
above feature spectral selection method can remove spectral regions unrelated to glycogen and 
moisture contents and achieve data reduction, the performance characteristics of PLSR models 
based on full spectra were generally better than those of PLSR models based on feature spectra.  
Taken together, the PLSR model for predicting the glycogen content of Japanese wagyu beef 
samples could be further enhanced for better Rp

2 and higher RPD values with more samples in 
the calibration set, and the PLSR model based on full spectra with smoothing-MSC treatment 
was implemented to predict the moisture content of Japanese wagyu beef samples in Tottori 
Prefecture, Japan.

4.	 Conclusion

	 In this study, the use of FT-NIR spectroscopy coupled with multivariable data processing to 
predict the glycogen and moisture contents in Japanese wagyu beef samples was investigated.  

Table 3
Performance comparison of PLSR models for predicting glycogen and moisture contents based on feature spectral 
data preprocessed by different methods.

Preprocessing Spectral region
(cm−1) LV

Calibration Prediction
RPDRc

2 RMSEC Rp
2 RMSEC

Glycogen 
(mg/g)

Nontreated 9000–4300 5 0.556 0.305 0.255 0.427 1.101
Smoothing 8800–4000 4 0.471 0.333 0.174 0.431 1.090

SNV 9000–4300 3 0.517 0.319 0.297 0.393 1.196
MSC 9000–4300 2 0.459 0.337 0.277 0.393 1.196

Smoothing-SNV 9000–4300 2 0.463 0.336 0.415 0.386 1.218
Smoothing-MSC 9000–4300 2 0.459 0.337 0.349 0.399 1.178

Moisture 
(w/w%)

Nontreated 8700–4300 4 0.856 1.988 0.751 2.619 2.047
Smoothing 9900–4000 4 0.838 2.116 0.725 2.846 1.883

SNV 8700–4300 2 0.800 2.347 0.738 2.755 1.946
MSC 8700–4300 3 0.826 2.188 0.750 2.737 1.958

Smoothing-SNV 8700–4300 3 0.826 2.19 0.755 2.710 1.978
Smoothing-MSC 8700–4300 3 0.826 2.188 0.750 2.746 1.952
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The obtained results showed that the present work generated the PLSR models of moisture 
content with a prediction performance similar to that in a previous work, and the achieved 
predictive models were considered to be good.  The performance of PLSR models for glycogen 
content prediction was not very strong; therefore, further studies are required to obtain more 
robust models for analytical purposes.  However, FT-NIR is a promising method for the 
prediction of glycogen and moisture contents, which are considered to affect the palatability of 
Japanese wagyu beef samples.
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