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ABSTRACT: Heterogeneity of variance among sub-
classes of an effect is a potential source of bias in genetic
evaluation. The objectives of this study were to quantify
the heterogeneity of variance in carcass weight in Japa-
nese Black cattle, to develop an adjustment method
to account for the heterogeneity, and to evaluate the
effectiveness of the method. A total of 96,950 records
were collected from steers and heifers slaughtered from
1997 to 2005. These records were grouped into 2,767
farm-market-year-sex subclasses. Fourteen log-linear
models for the variances were set up to estimate the
heterogeneous phenotypic variances within subclasses.
Schwarz’s Bayesian information criterion was used for
model selection. The preadjustment of records to a base-
line variance was based on maximum likelihood esti-
mates obtained from the selected model. As a result of

adjustment, the SD, the CV, and the Gini coefficient
for the phenotypic variance decreased by 68.6, 69.8, and
70.1%, respectively. When the top 5% of sires and top
1% of dams were selected, Spearman’s rank correlation
coefficients between the adjusted and unadjusted data
were 0.95 for the selected sires and 0.78 for the selected
dams. The effectiveness of the adjustment was evalu-
ated in terms of the ability to predict breeding values,
using the results of the successive genetic evaluations.
Mean squared error between the parent averages and
actual predicted values of the genetic merit for the sires
whose progeny had a carcass record only from 2003 to
2005 was significantly reduced by the adjustment (P <
0.05). The results suggest that the genetic evaluation
becomes more accurate by adjusting the data using the
procedure developed in this study.
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INTRODUCTION

Many applications of the BLUP procedure (Hender-
son, 1973) assume that variance components are con-
stant across subclasses of effects considered. However,
genetic, environmental, and phenotypic variances seem
to be heterogeneous in practice (Brotherstone and Hill,
1986). The bias caused by ignoring the heterogeneity
of variance is severe, especially in the selection of dams
of future sons, because progeny of a dam tend to make
records in the same herd (Vinson, 1987).
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Japanese Black cattle are a main beef breed in Japan.
Genetic evaluation of sires and dams has been carried
out, and dramatic genetic gains for carcass traits have
been achieved within prefectures (Sasaki et al., 2006).
Recently, a national genetic evaluation has provided
the possibility of accelerating the genetic improvement.
The management and environmental conditions of the
fattening farms vary greatly from the north to the south
of Japan; these differences may cause heterogeneity of
variance and bias in the national cattle evaluation.

Several procedures for accounting for heterogeneous
variances have been presented. Among them, the proce-
dure using standardization of records before solving
the mixed model equations (i.e., 2-step procedure) may
work well when the size of the subclasses is relatively
small and have applicability to BLUP with the animal
model (Hill, 1984). Modeling of the heterogeneity of
variance seems to be important in determining the ef-
fectiveness of the 2-step procedure; therefore, a 2-step
procedure that allows setting and comparing various
methods of modeling the heterogeneity of variance is
needed.
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The objectives of this study were 1) to quantify the
heterogeneity of variance in Japanese Black cattle, 2)
to develop a 2-step procedure that allows setting and
comparing various methods of modeling the heteroge-
neity of variance, and 3) to evaluate the effectiveness
of the method developed using field data from Japanese
Black cattle.

MATERIALS AND METHODS

Animal Care and Use Committee approval was not
obtained for this study because the data were obtained
from an existing database.

Data

Records of carcass weights of Japanese Black cattle
were collected from 26 carcass markets from 1997 to
2005. All animals used for this study were fattened at
130 farms of Agura Kyosai Farm Ltd. across Japan.
Odani et al. (2004) demonstrated that the fattening
farms of Agura Kyosai Farm Ltd. across Japan were
genetically connected, and a mathematical model con-
taining the combination of fattening farm, market,
year, and sex provided the best fit. Accordingly, farm-
market-year-sex (FMYS) subclasses were created. The
FMYS subclasses with less than 5 observations were
excluded from the analysis. After data editing, a total
0f 96,950 carcass weight records with 2,767 FMYS sub-
classes were available for this study. The sample size of
the FMYS subclasses ranged from 5 to 553. The average
number of observations per FMYS subclass was 35.4.
The number of FMYS subclasses with less than or equal
to 10 observations was 425. Of the 96,950 total records,
57,461 records collected from 1997 to 2002 with 1,591
FMYS subclasses were extracted and denoted as data
set I, which was used to quantify the heterogeneity of
variance and to evaluate the method developed for its
adjustment. The whole data set was denoted as data
set I and was used to evaluate the effectiveness of
the method developed in terms of the ability to predict
breeding values.

Degree of Heterogeneity of Phenotypic Variance
in Japanese Black Cattle

Within-FMYS phenotypic variance was estimated by
the following expression:

& = iy~ ny Dl — ), .

where y; = the n; x 1 vector of carcass weights; y; = the
mean of carcass weight; and n; = the number of animals
in the ith FMYS subclass.

Heterogeneity of the within-FMYS phenotypic vari-
ances was measured by Bartlett’s test (Kendall and
Stuart, 1979).
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BLUP Evaluation

Breeding values were predicted using the following
animal model:

Yij = FMYS, + b](t,/ - Z) + bz(tl/ - 2)2 +u; + ey, [2]

where y;; = the carcass weight of animal j in the ith
FMYS subclass; FMYS; = the fixed effect of the ith
FMYS subclass; b, and by = linear and quadratic regres-
sion coefficients, respectively, on fattening period (i.e.,
period from start of fattening to shipping to market in
number of days); t;; and ¢ = the fattening period of a
particular animal and the arithmetic mean of the fat-
tening period, respectively; u; = the breeding value of
animal j; and e;; = the random residual. Ancestors were
traced back 2 generations from the fattened steers and
heifers and added as pedigree animals. Consequently,
the total number of animals included in the analysis
was 128,505 and 197,883 for data set I and II, respec-
tively. Number of sires of steers and heifers included
in the pedigree file was 739 and 911 for data set I
and II, respectively. Variance components and breeding
values were estimated using the set of multiple-trait,
derivative-free, REML (MTDFREML) programs (Bold-
man et al., 1993).

Adjustment for Heterogeneity
of Phenotypic Variance

Maximum Likelihood Estimation. The estimates of
variance obtained from a maximum likelihood method
with a log-linear model were used for the adjustment.
The maximum likelihood estimation discussed by Har-
vey (1976) and Aitkin (1987) was applied. The general
principle is outlined below:

v = X;/B + €, (l = 1, eey n), [3]

where y; = the carcass weight of animal i; 8 = the [ x
1 vector of parameters of fixed effects; and x; = the [ x
1 vector of explanatory variables linking y; and 3. The
error terms (e¢;) are independently distributed as

N(0,6%). The variance model is the log-linear form:
logo?=zA(i=1,..n), (4]

where A =the m x 1 vector of parameters of fixed effects
and z; = the m x 1 vector of explanatory variables linking
log o7 and A. In addition, z; may contain some or all of
the explanatory variables included in x; and other ex-
planatory variables not included in x;.

Let y be the n x 1 vector of observations. The log-
likelihood under models [3] and [4] is:

n n e , 2
log L(B3, A\; y) = *% {2 log 0% + Z M} -
i-1 -

=1 2

[ZZ;A .y if} 51
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Adjusting for heterogeneity of variance

where d; = (y; - x,3)°. The iterative equations for esti-
mating 3 and A are written separately as:

Buy = X XXX Z Yy, (6]

sy =N+ ZL7'Z(2Md-1,) = {7
(ZT)7'Z(xd -1, + ZN),

where d = the n x 1 vector whose ith element is d;; X
and Z = n x [ and n x m matrices of the explanatory
variables, respectively; and X = the diagonal variance
matrix whose ith diagonal element is o?. 1, = the n x
1 vector of unit elements; and ¢ = the ¢th iteration.

The iteration begins by taking o? = o2. The deviance
(—2logL) is calculated for each iteration. Equations [6]
and [7] are alternated until the deviance converges.
Convergence was considered to have been reached
when the absolute difference between the deviances of
2 consecutive iterations was less than 1078,

Definition of the Mathematical Model in Maxi-
mum Likelihood Estimation. Only 1 mathematical
model was formed as a mean model, Eq. [3], where 8
contains fixed FMYS subclass effects and fixed linear
and quadratic regression coefficients on fattening pe-
riod of the fattened animal.

On the other hand, various mathematical models
were considered as a variance model, Eq. [4]. Model 1
was for the homogeneous modeling. For the heteroge-
neous modeling, 2 alternative methods of modeling
were considered.

First, management-group modeling was considered.
According to previous studies on dairy populations (Hill
et al., 1983; Weigel et al., 1993; Ibatiez et al., 1996;
Urioste et al., 2001), production levels of herds largely
affect the heterogeneity of variance due to differences
in management and due to scale effects, and factors
such as period, herd size, and management practices
were also reported as sources of heterogeneity of vari-
ance. In this study, the management factors (farm, mar-
ket, year, and sex), the size of FMYS subclass (classified
into 4 levels: 5t0 12, 13 to 23, 24 to 46, and >46 animals),
and the production level of FMYS subclass (classified
into 4 levels: <378 kg, 378 to 405 kg, 405 to 432 kg, and
>432 kg) seemed to cause the heterogeneity of variance.
Screening of these 6 factors as possible causes of hetero-
geneous phenotypic variances was performed using
Levene’s test (Levene, 1960). As a result, significant
heterogeneity was detected across levels of all factors
(P <0.001), except for the size of FMYS subclass. These
5 factors were used to form the fixed effect part in
Eq. [4]. Combining some of the 5 factors might better
describe the heterogeneity of variance. Therefore, 6 dif-
ferent combinations of the 5 factors were set up as
follows:

Model 2. F+ M+ Y + S + P
Model 3: FY + M + S + P;
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Model 4: FM +Y +S + P;

Model 5: FMS + Y + P;

Model 6: FMY + S + P; and

Model 7: FMYS + P,

where F = farm; M = market; Y = year; S = sex; and
P = production level of FMYS subclass.

Alternatively, cluster modeling was considered to re-
duce the number of parameters fitted. Cluster modeling
assumes that the variance is homogeneous among the
subclasses of the same cluster and is heterogenous be-
tween subclasses of different clusters. The FMYS sub-
classes were grouped into clusters based on the simulta-
neous similarity of the phenotypic mean and variance.
For the determination of the clustering, cluster analysis
was performed using the SAS FASTCLUS procedure
(SAS Inst. Inc., Cary, NC). Phenotypic means and vari-
ances were standardized using the STANDARD proce-
dure of SAS when the distances between subclasses
were calculated. Each cluster had at least 2 subclasses.
The 7 models (models 8,9, 10, 11, 12, 13, and 14) differed
in number of clusters. The maximum numbers of clus-
ters allowed in the clustering step for these 7 models
were 10, 30, 50, 100, 200, 300, and 500, respectively.
The factor of the production level of FMYS subclass
was included as a fixed effect. The fixed effect part in
Eq. [4] was:

CLFMYS + P,

where CLFMYS = cluster consisting of various numbers
of FMYS subclasses and P = production level of the
FMYS subclass (4 levels).

Model Comparison. Generally, as the number of
parameters in the model increases, or the model be-
comes more complex, the fit is improved (the deviance
decreases). A balance between fit and complexity is
needed. Therefore, 14 models were compared, taking
into account the balance. Schwarz’s Bayesian informa-
tion criterion (BIC; Schwarz, 1998) is a criterion based
on parsimony and imposes a penalty on more compli-
cated models. A smaller value of BIC indicates a better
model. The choice of an optimal model was based on
BIC. The BIC was calculated as:

BICk = —2logLg + pglog(n),

where Lg = the maximum of the likelihood within model
K; px = the number of parameters in model K; and n =
the number of observations.

Adjustment of Observations to Constant Pheno-
typic Variance. To account for the heterogeneity of the
within-FMYS phenotypic variances, a 2-step procedure
was adopted. Carcass weights were standardized to a
baseline SD as follows,
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- ML
v = FMyse 4 L= LIS 8)

— OBASE;
Vexp(z;AME)

where y;; = the adjusted observation of the fattened
animal j in the ith FMYS subclass; FMYSYL and AME =
maximum likelihood estimates of the fixed effect of the
ith FMYS subclass and A, respectively; and o5 = the
baseline SD. In this study, %45z was defined as 1,788.4
kg?. After adjustment, within-FMYS phenotypic vari-

ances (s;?) were estimated using Eq. [1], with y; and

i, which are the adjusted observation and its mean, re-
spectively.

Assessment of the Adjustment Based
on Reduction in Heterogeneity
of Phenotypic Variance

The effect of adjusting the observation for heteroge-
neity of within-FMYS phenotypic variances was visual-
ized by Lorenz curves (Marshall and Olkin, 1979) and
measured by 3 indices: SD of variances, CV of variances,
and Gini coefficients (Urioste et al., 2001). In Lorenz
curves, the cumulative proportion of the ordered sub-
class (x-axis) was plotted against the cumulative pro-
portion of their variances (y-axis). If a Lorenz curve
downwardly separates from the line of perfect equality
(v = %), then a large degree of heterogeneity exists.

Validation of the Adjustment Based on Predicted
Breeding Value

The effect of the adjustment on BLUP evaluation
was investigated by comparing the predicted breeding
values obtained using the unadjusted and adjusted data
from data set I. The breeding values with the adjust-
ment for heterogeneity of variance were obtained, re-
placing y;; by y;;in Eq. [2]. Spearman’s rank correlations
between predicted breeding values of the adjusted and
unadjusted data were calculated to assess the re-
ranking of animals.

Furthermore, the effect of the adjustment on the abil-
ity to predict breeding values was investigated by com-
paring the results of the successive genetic evaluations
with data set I and data set II. The parent average
(PA) for each of the sires whose progeny had a carcass
record only in data set II was calculated from the pre-
dicted breeding values of their parents in data set L.
The number of sires with more than 10 progeny that
had a carcass record only in data set Il was 47. Average
number of progeny of these sires was 87.4. The PA
values for these sires were compared with their pre-
dicted breeding values in data set II (). Parent average
and @z were considered as the expected values and actual
predicted values of the genetic merit for the sires, re-
spectively. Hence, the ability to predict breeding values
was assessed by 3 statistics: 1) mean squared error
(MSE) between PA and @, 2) correlation coefficient be-
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tween PA and @ (7, pa), and 3) regression coefficient of
&t on PA (bypa). A small value of MSE indicates consis-
tency between the expected values as parental average
and the actual predicted values with performance prog-
eny records and also indicates the ability to predict
breeding values of future animals. The correlation r; pa
depends on both the precision and bias of the evalua-
tions, and a value of unity is preferable. The deviation
of byps from 1 indicates that bias exists (Reverter et
al., 1994).

Least-squares ANOVA was performed using the
GLM procedure of SAS to compare the unadjusted pro-
cedure and the heterogeneity-adjusted procedure based
on MSE. The squared errors between PA and @ for each
of the sires derived from the 2 procedures were treated
as dependent variables (94 observations), and the proce-
dure (2 levels) and the individual sire (47 levels) were
treated as fixed and random effects, respectively. The
correlation coefficients and the regression coefficients
were calculated using the CORR and REG procedures
of SAS, respectively. The test of significance of the dif-
ference between 2 correlation coefficients and the #-test
of 2 regression coefficients were performed (Snedecor
and Cochran, 1980).

RESULTS AND DISCUSSION

The within-FMYS phenotypic variances of the unad-
justed carcass weights (§%) were estimated, and 6 FMYS
subclasses, for which §2 or sample size were extreme,
were extracted and listed in Table 1. The largest §2 was
about 85 times as large as the smallest one. Even when
subclasses with more than 100 observations were con-
sidered, the §* ranged from 786.8 to 3,496.6 kg?. The
Bartlett’s test rejected homogeneity of the within-
FMYS phenotypic variances (P < 0.001), indicating the
necessity of accounting for heterogeneity of variance in
genetic evaluation of Japanese Black cattle.

Several procedures of accounting for heterogeneous
variances have been presented, using a 2-step proce-
dure (Hill, 1984; Wiggans and VanRaden, 1991; Weigel
and Gianola, 1993; Weigel and Lawlor, 1994; Dodenhoff
and Swalve, 1998; Urioste et al., 2001), a multiplicative
mixed model (Meuwissen et al., 1996; Robert-Granié et
al., 1999), an empirical Bayesian method (Gianolaet al.,
1992), a structural model approach (Foulley et al., 1992;
San Cristobal et al., 1993), and a multiple-trait ap-
proach (Henderson, 1984; Gianola, 1986; See, 1998).

The sizes of fattening farms and carcass markets of
Japanese Black cattle are generally small (Sasaki,
1992, 2001); as a result, the sizes of the FMYS sub-
classes became relatively small. Therefore, the 2-step
procedure seems to meet the conditions of this study.
Modeling of the heterogeneity of variance was of inter-
est in some of the 2-step procedures (Weigel and Lawlor,
1994; Urioste et al., 2001). A model containing manage-
ment factors was fitted to the phenotypic variances
within subclass, and the resulting solutions were used
to estimate the prior variance for each subclass. The
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Adjusting for heterogeneity of variance

Table 1. Comparison of the estimates of within-farm-market-year-sex (FMYS) phenotypic
variances (kg®) for carcass weight for extreme examples of FMYS subclass with respect

to the phenotypic variance with the unadjusted data (3%) or sample size

Example Management-group modeling Cluster modeling

FMYS Observations

subclasses  per subclass §? Model 2 Model 3 Model 7 Model 10  Model 14 g2l
A 8 7,087.5 1,483.7 1,877.6 5,933.5 5,387.1 4,724.1 2,352.9
B 6 83.5 1,926.2 1,984.6 67.0 681.0 263.8 219.2
C 101 3,496.6 2,348.7 3,136.7 3,406.5 3,192.0 3,472.3 1,959.0
D 102 786.8 1,092.2 967.4 741.6 837.1 770.7 1,680.8
E 553 2,143.4 1,957.6 2,020.0 2,087.0 2,237.8 2,108.9 1,967.3
F 5 3,114.0 1,382.4 1,208.7 2,498 4 2,830.8 3,046.5 1,713.0

2433

!The observations were adjusted based on the estimates with the best log-linear model (model 10). After

the adjustment, $*? were estimated.

prior variances and phenotypic variances within sub-
class were combined using Bayesian methods to obtain
the posterior variances, and the posterior variances, in
turn, were used to standardize the observations. In the
series of steps, the method of modeling the heterogene-
ity to obtain the prior variance has not been fully dis-
cussed by previous authors. Therefore, a 2-step proce-
dure that allows setting and comparing various meth-
ods of modeling the heterogeneity of variance was
developed in this study.

Fourteen log-linear models were set and compared
to obtain maximum likelihood estimates of the hetero-
geneous within-FMYS variances. The model selection
criteria of the number of parameters, the deviance, and
the BIC for each model are shown in Table 2. With
respect to management-group modeling, the deviance
decreased (the fit was improved), as more factors were
combined in the model. In addition, estimates of the
within-FMYS phenotypic variances obtained with mod-
els 2 and 3 were largely different from the §2 for small
subclasses (example A, B, and F in Table 1), whereas
those obtained with models 4 to 7, where a larger num-
ber of factors were combined, were comparatively close
to the 3% Models 2 and 3 seem to be unsuitable to
estimate the variances, especially for small subclasses.
Models 4 to 7 fitted well, but a drawback of these models
was that the extremely large number of parameters
(overparameterization) might reduce the accuracy of
the estimates. As it turned out, all of the models using
management-group modeling were worse than homoge-
neous modeling in terms of BIC.

As a more simplified model, cluster modeling was
considered. Even if a very small number of parameters
were considered, the deviances for clustering modeling
were relatively good. The deviances for models 9 to
14 were similar to each other. All of the models using
cluster modeling were better than homogeneous model-
ing in terms of BIC. Consequently, model 10 seems to
be best considering both fit and complexity. Then, the
observations were adjusted with Eq. [8], using the maxi-
mum likelihood estimates with model 10. After adjust-
ment, the within-FMYS phenotypic variances (§%?) were
estimated with the adjusted data and included in Table

1. The 5*2 were more homogeneous than the §2, at least
in the case of the 6 subclasses shown in Table 1.

The distributions of the estimates of the within-
FMYS phenotypic variances for carcass weight ob-
tained from the unadjusted (3%) and adjusted data (§*?)
are displayed as box-and-whisker plots (Figure 1). Box-
and-whisker plots show the median, upper and lower
quartiles, and minimum and maximum values of the
estimates of the within-FMYS phenotypic variances.
Although the distribution of the §* had a long upper
tail, that of the §*2 was more symmetric. The reduction
in range and difference between the upper and lower
quartiles were 55.0 and 69.0%, respectively, indicating
that most of the subclasses moved closer to the median
after the adjustment.

Table 2. Model selection criteria for the 14 log-linear vari-
ance models'

Variance model® Parameters® Deviance® BIC

Homogeneous modeling

Model 1 1 0 0
Heterogeneous modeling

Management-group modeling

Model 2 168 -1,201 630
Model 3 445 -1,883 2,983
Model 4 772 -2,370 6,080
Model 5 998 -2,713 8,213
Model 6 1,295 -3,354 10,827
Model 7 1,595 -3,788 13,681
Cluster modeling
Model 8 11 -2,367 -2,257
Model 9 27 -3,145 -2,860
Model 10 39 -3,339 -2,922
Model 11 70 -3,545 -2,788
Model 12 129 -3,660 -2,257
Model 13 184 -3,682 -1,676
Model 14 254 -3,694 -921

Deviance = —2logl. and BIC = Schwarz’s Bayesian information
criterion.

2Formulas for each model are described in the text.

*The number of parameters of the corresponding log-linear variance
model are listed; an additional 1,593 parameters of the mean model
are actually fitted in the maximum likelihood estimation.

*Deviance and BIC are relative to the values of deviance and BIC
for homogeneous modeling, which were 487,787 and 505,255, respec-
tively.
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Figure 1. Box-and-whisker plots of within-farm-mar-
ket-year-sex phenotypic variances for carcass weight with
the unadjusted and adjusted data.

Lorenz curves of the within-FMYS phenotypic vari-
ances for carcass weight depict the existence of hetero-
geneity in the variances (Figure 2). The Lorenz curve
moved closer to the line of perfect homogeneity after
adjustment. Table 3 shows the change in heterogeneity
due to the adjustment in terms of SD, CV, and Gini
coefficients for the phenotypic variances. After the ad-
justment, all 3 measures of heterogeneity decreased by
68.6 to 70.1%. The adjustment procedure significantly
reduced the heterogeneity of within-FMYS pheno-
typic variances.

As a reference, if the observations had been adjusted
using the maximum likelihood estimates obtained with
model 2, the 3 measures of heterogeneity would have
been reduced by only 7.8 to 12.1%. Judging from the
results of this study and Urioste et al. (2001), the proce-
dure of modeling heterogeneity is especially important
in determining the efficiency of the adjustment.

1.0
Perfect homogeneity //
0.8] ——— Unadjusted data i
------ Adjusted data 2
0.6 ’,/'////
N L 7
-~ s ///
0.4 g
s
o
P //
0.2 -
ofias ///
0.0lf=="
0.0 0.2 0.4 0.6 0.8 1.0
X

Figure 2. Lorenz curves of within-farm-market-year-
sex phenotypic variances for carcass weight with the un-
adjusted and adjusted data and the line of perfect homo-
geneity (where y = x).
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Table 3. Change in degree of heterogeneity of within-
farm-market-year-sex (FMYS) phenotypic variances for
carcass weights between unadjusted data and adjusted
data

Unadjusted Adjusted Reduction,!
Parameter data (A) data (B) 72
SD 839.1 263.1 68.6
CV 47.7 14.4 69.8
Gini coefficient 25.3 7.6 70.1

'Reduction of the heterogeneity of within-FMYS phenotypic vari-
ances was calculated as: 100 x (A — BYA,

Spearman’s rank correlation coefficients based on
predicted breeding values obtained with the unadjusted
and adjusted data were calculated within sex. The over-
all correlation was high: 0.997 for sires and 0.994 for
dams. When only the top 1% of dams was used, however,
the correlation dropped to 0.780, indicating reranking
of the elite dams due to the adjustment. On the other
hand, the correlation was still high (0.947) when only
the top 5% of sires was used. Therefore, the reranking
was greater for dams than for sires.

Sire ranking may also be affected when progeny are
nonrandomly distributed between high and low vari-
ance environments (Vinson, 1987). However, the sire
evaluation seems to be robust against heterogeneity of
variance, because progeny of a sire are distributed
across many subclasses (an average of 28.5 subclasses
in this study). On the other hand, progeny of dams
existed in only 1.6 subclasses on average; therefore, the
predictions of dams were more likely to be biased by
heterogeneity of variance. It is suggested that the effect
of the adjustment on bull-dam selection is large. This
finding is in agreement with previously reported results
(Vinson, 1987; Meuwissen and Van der Werf, 1993;
Urioste et al., 2003).

The ability to predict genetic values estimated by
BLUP was compared between the unadjusted proce-
dure and the heterogeneity-adjusted procedure based
on the MSE between PA with data set I and their pre-
dicted breeding values obtained with data set II, the
correlation coefficient (r; pa) between PA and @, and the
regression coefficient (bypa) of & on PA. The resulting
statistics of the 3 criteria are shown in Table 4. The
MSE obtained with the heterogeneity-adjusted proce-
dure was smaller than that obtained with the unad-
justed procedure, and the effect of the procedure on the
MSE between PA and & was significant (P = 0.026). The
values of r; ps and b, pa obtained with the heterogeneity-
adjusted procedure were slightly closer to 1.0 than those
obtained with the unadjusted procedure, although dif-
ferences between the procedures were not statistically
significant. The significant reduction in MSE suggests
that the genetic evaluation becomes more accurate us-
ing the adjustment for heterogeneity of variance. The
consistency between the expected values as PA and the
actual predicted values obtained with progeny perfor-
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Table 4. Comparison between the unadjusted procedure
and the heterogeneity-adjusted procedure regarding the
ability to predict breeding values based on MSE, r; py,
and b[,”)/\l

Procedure MSE ripa bapa
Unadjusted 500.9 0.657 0.855
Adjusted 452.9 0.664 0.858
P? NS NS

IMSE = mean squared error between parent average (PA) with
data set I and their predicted breeding values obtained with data set
IT (&) for sires whose progeny had a carcass record only in data set
II; ry pa = the correlation coefficient between PA and @; and b;py =
the regression coefficient of 2 on PA.

ZResults of significance testing for the statistics for ability to predict
breeding values between the unadjusted procedure and the heteroge-
neity-adjusted procedure.

#P < 0.05.

mance data is an important property of genetic evalua-
tion, because the genetic performance of future animals
is of interest to breeders and farmers. Consequently,
the heterogeneity-adjusted procedure developed in this
study proved to be effective in accounting for heteroge-
neity of variance.

In conclusion, an adjustment procedure based on a
maximum likelihood method with a log-linear model
was developed to account for heterogeneity of within-
FMYS phenotypic variances in genetic evaluation. Ap-
plication of the developed procedure to the analysis of
carcass weights of Japanese Black cattle significantly
reduced the heterogeneity of variance. The effective-
ness of the procedure was evaluated in terms of the
MSE between the expected values and actual predicted
values of the genetic merit for the sires using the results
of successive genetic evaluations. The procedure is sim-
ple to use and applicable to other quantitative traits or
other breeds. This study was based on data collected
from various farms owned by a commercial company
using a unified recording system. If the data from differ-
ent recording systems are pooled for national genetic
evaluation of Japanese Black cattle, the benefits of ac-
counting for heterogeneous variances could become
more substantial.
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