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Abstract

In the present study, thirteen genes involved in the reverse cholesterol transport (RCT) pathway were investigated for their
associations with three fat depositions, eight fatty acid compositions and two growth-related phenotypes in a Wagyu x
Limousin reference population, including 6 F1 bulls, 113 F1 dams, and 246 F2 progeny. A total of 37 amplicons were used to
screen single nucleotide polymorphisms (SNPs) on 6 F1 bulls. Among 36 SNPs detected in 11 of these 13 genes, 19 were
selected for genotyping by the Sequenom assay design on all F2 progeny. Single-marker analysis revealed seven SNPs in
ATP binding cassette A1, apolipoproteins A1, B and E, phospholipid transfer protein and paraoxinase 1 genes significantly
associated with nine phenotypes (P,0.05). Previously, we reported genetic networks associated with 19 complex
phenotypes based on a total of 138 genetic polymorphisms derived from 71 known functional genes. Therefore, after
Bonferroni correction, these significant (adjusted P,0.05) and suggestive (adjusted P,0.10) associations were then used to
identify genetic networks related to the RCT pathway. Multiple-marker analysis suggested possible genetic networks
involving the RCT pathway for kidney-pelvic-heart fat percentage, rib-eye area, and subcutaneous fat depth phenotypes
with markers derived from paraoxinase 1, apolipoproteins A1 and E, respectively. The present study confirmed that genes
involved in cholesterol homeostasis are useful targets for investigating obesity in humans as well as for improving meat
quality phenotypes in a livestock production.
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Introduction

Reverse cholesterol transport (RCT) pathway represents an

important process involved in cholesterol homeostasis [1–2]. In the

process, high density lipoproteins (HDL) serve as transport

particles by which peripheral cell cholesterol can be returned to

the liver for catabolism [3]. Studies have shown that apolipopro-

tein A1 (APOA1) is an essential co-factor for several key

components of RCT including lecithin:cholesterol acyltransferase

(LCAT) [4], ATP binding cassette A1 (ABCA1) [5], and scavenger

receptor B1 (SCARB1) [6]. Similarly, apolipoprotein B (APOB) is

required for synthesis of chylomicrons and very low density

lipoprotein (VLDL) in the intestines and the liver [7–8].

Meanwhile, apolipoprotein C-II (APOC2) is responsible for

activation of lipases, on chylomicrons and VLDLs [9], a crucial

aspect of fatty acid homeostasis. Finally, apolipoprotein E (APOE)

is extremely important to low density lipoproteins (LDL) and

chylomicron remnant clearance through the low density lipopro-

tein receptor (LDLR) [10]. On the other hand, HDL protects

against atherosclerosis primarily via RCT, but also has powerful

antioxidant properties directed specifically toward oxidized lipids

inside lipoproteins. This effect appears to be caused by the

paraoxidase I (PON1) gene product [11].

In circulation, the activities of lipoprotein lipase (LPL),

endothelial lipase (LIPG), and hepatic lipase (LIPC) continuously

remodel lipoproteins, which profoundly affect their metabolic fate.

The primary function of LPL is to hydrolyze triglyceride-rich

lipoproteins, especially chylomicrons and VLDL, thereby gener-

ating free fatty acids and glycerol for energy metabolism and

storage [9]. These lipoproteins, along with HDL, are also modified

by LIPG, which primarily hydrolyzes phospholipids [12]. LIPC

has powerful VLDL and IDL (intermediate density protein)

triglyceride hydrolysis capabilities [13], as well as the ability to

condense HDL into a subspecies that is more likely to interact with

SCARB1 for cholesterol efflux or endocytosis [14]. In addition, the

phospholipid transfer protein (PLTP) facilitates the transfer of
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phospholipids and to a lesser extent, cholesterol from triglyceride

rich lipoproteins such as VLDL and chylomicrons into HDL [15–

16].

All these molecular events indicate that the RCT pathway is a

major component of lipid homeostasis affecting lipid phenotypes.

Mammals achieve intravascular lipid transport though production

and metabolism of lipoproteins, which distribute cholesterol and

fatty acids to peripheral tissues expressing the appropriate lipases/

receptors. However, little effort has been directed towards

understanding how the RCT pathway affects different fat depot

storages, fatty acid compositions and overall body growth.

Furthermore, differences in dietary intake and digestive physiology

between ruminants and non-ruminants produce questions regard-

ing the importance of these pathways to cattle. To this end, the

aim of the present study was to investigate the potential molecular

links of the RCT pathway genes with the fat deposition, fatty acid

composition and body growth-related phenotypes using cattle as a

model organism.

Materials and Methods

Animals and phenotypes
A Wagyu x Limousin reference population was jointly

developed by Washington State University and the Fort Keogh

Livestock and Range Research Laboratory, ARS, USDA, as

previously described [17–18]. The Fort Keogh Livestock and

Range Research Laboratory Institutional Animal Care and Use

Committee approved all protocols that involved use of animals in

this research study. The DNA samples used in the present study

were derived from 6 F1 bulls, 113 F1 dams, and 246 F2 progeny in

the Fort Keogh Livestock and Range Research Laboratory, ARS,

USDA. Fat deposition for three depots was measured by a trained

evaluator after 48 h of chilling at 2uC and included beef marbling

score (BMS), subcutaneous fat depth (SFD) and percent kidney-

pelvic-heart fat (KPH). BMS reflects the dispersion of intramus-

cular fat in the longissimus muscle and is determined subjectively

based on U.S. Department of Agriculture standards (http://www.

ams.usda.gov). SFD was measured at the 12th to 13th rib interface

perpendicular to the outside surface at a point three-fourths the

length of the longissimus muscle from its chine bone end. KPH was

subjectively estimated as percentage of the carcass weight. In

addition, carcass weight (CW) and rib-eye area (REA) were

collected as two growth-related phenotypes on these F2 animals.

CW was determined as the unchilled weight in pounds

immediately after harvest before rinsing/washing and chilling.

The area of the longissimus muscle measured in square inches at the

12th rib interface on the beef forequarter was recorded as REA.

Fatty acid composition in muscle samples was measured

according to methodology previously described [17,19]. In short,

approximately 150 mg samples of longissimus dorsi muscle tissue

were completely saponified with 4.0 ml of 1.18 M KOH in

ethanol at 90uC. After about 45 minutes, 2.0 ml of water were

added. Cholesterol (CHOL) was extracted with 2.0 ml of hexane,

which contained 0.1 mg/ml of stigmasterol as an internal standard

for the cholesterol assay. One millilitre of concentrated HCl was

added to the original tubes and fatty acids were extracted in 2.0 ml

of hexane for fatty acid methyl ester (FAME) preparation using

methanolic HCl as a catalyst. The amount of conjugated linoleic

acid (CLA) was measured using acid catalysts. FAME data were

used to measure the following: saturated fatty acids (SFA) =

myristic + pentadecanoic + palmitic + heptadecanoic + stearic,

monounsaturated fatty acids (MUFA) = myristoleic + pentade-

cenoic + palmitoleic + heptadecenoic + oleic + vaccenic, and

polyunsaturated fatty acids (PUFA) = linoleic + linolenic. The

relative amount of SFA, MUFA and PUFA was defined as SFA =

(SFA/total fat in 100 g dry meat) 6100%, MUFA = (MUFA/

total fat in 100 g dry meat)6100% and PUFA = (PUFA/total fat

in 100 g dry meat) 6100%, respectively. Three stearoyl-CoA

desaturase activities were estimated as R1 = (14:1/14:0) 6100%,

R2 = (16:1/16:0) 6100% and R3 = (18:1/18:0) 6100%.

Gene annotation, mutation discovery and genotyping
A total of 13 genes, including ABCA1, APOA1, APOB, APOC2,

APOE, LCAT, LDLR, LIPC, LIPG, LPL, PLTP, PON1 and SCARB1

were selected for the present study. As discussed above, these genes

are involved in the RCT pathway. Manual annotation of each

gene occurred as follows: First, cDNA sequences of candidate

genes were retrieved from the National Center for Biotechnology

Information (NCBI) Entrez database. To produce full length

cDNA sequences, the retrieved sequences were re-annotated using

electronic rapid amplification of cDNA ends (e-RACE) [20]. Next,

the full-length cDNA sequence was used to search for genomic

DNA contigs against the 7.15X bovine genome sequence database

(see the Bovine Genome Resources at NCBI). Primer design was

completed using the Primer3 online oligonucleotide design tool

[21]. Based on genomic DNA sequences, 37 primer pairs were

designed to amplify genetic targets located in 13 genes (Table 1).

Approximately 50 ng of genomic DNA from each six Wagyu x

Limousin F1 bulls was amplified in a final volume of 10 ml that

contained 12.5 ng of each primer, 150 mM dNTPs, 1.5 mM

MgCl2, 50 mM KCl, 20 mM Tris-HCl and 0.25 U of AmpliTaq

Gold polymerase (Applied Biosystems, Branchburg, NJ). PCR

conditions were as follows: 95uC for 10 minutes, 8 cycles of 94uC
for 30 sec, 71uC for 30 sec, and 72uC for 30 sec, followed by 37

cycles of 94uC for 30 sec, 59uC for 30 sec, and 72uC for 30 sec,

and completed by an extension step at 72uC for 10 min. PCR

amplicons were sequenced on a capillary sequencer by High-

Throughput Sequencing Solutions (Seattle, WA). Selected muta-

tions were genotyped in 246 F2 animals using the Sequenom

iPLEX assay service provided by Genomics Center at University

of Minnesota.

Data Analysis
The HAPLOVIEW [22] program was utilized to determine

degrees of Hardy-Weinberg equilibrium within each marker and

linkage disequilibrium between markers within each gene. The

association between genotypes and phenotypic traits was evaluated

using the GLM (general linear model) procedure of SAS v9.2 (SAS

Institute Inc., Gary, NC) based on the following model:

yijklm~

mzyearizsexjzsireskzb|agez genotypelf gl~1,Lzeijklm

where yijklm is phenotypic measurement of a quantitative trait for

animal m, yeari is the effect of the i-th harvest year (i = 1,2,3), sexj is

the effect of the j-th sex category (j = 1,2), siresk is the effect of the k-

th sire producing animal m (k = 1,2,3,4,5,6), age is a covariate for

age in days of the animal at harvest, and b is the coefficient vector

corresponding to the covariate age, genotypel represents the effects

of each genotype at the l-th SNP locus, for l~1, . . . ,L, and eijklm is

a residual term pertaining to animal m. When L = 1, the above

model reduces to single-marker analysis, and the P value is

adjusted using Bonferroni correction [23]. Using the same

reference population, Jiang and colleagues [24] reported genetic

networks associated with 19 complex phenotypes based on a total

of 138 genetic polymorphisms derived from 71 known functional

genes. After Bonferroni correction, significant (adjusted P,0.05)

RCT Pathway for Fat Deposition and Muscle Growth
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and suggestive (adjusted P,0.10) genetic markers determined in

the present study were merged in the dataset above to identify

novel genetic networks involving the RCT pathway. Assignment of

quantitative trait modes (QTMs) to each associated marker and

linear regression models involving all significant markers for a

given phenotype were described previously [23] with minor

modifications. Akaike’s information criterion (AIC) [25] was used

to compare different models each representing a specific genetic

network. AIC is a measure of the goodness of fit of an estimated

statistical model, panelized by a function of the number of

estimated parameters. It is grounded in the concept of entropy, in

effect offering a relative measure of the information lost when a

given model is used to describe reality and can be said to describe

the tradeoff between bias and variance in model construction, or

loosely speaking that of accuracy and complexity of the model.

Generally, AIC is expressed as:

AIC~2k{2ln Lð Þ

where k is the number of parameters, and L is the maximized value

of the likelihood function for the estimated model. Given a data

Table 1. Gene symbols, GenBank references, amplicons and SNPs discovered in the present study.

Symbol Reference Amplicon (59 – 39)* SNPs

ABCA1 AAFC03037127 8349 (24) – 8843 (24)

7516 (23) – 8091 (23)

26751 (23) – 27342 (24) 26841G.T, 27113G.A

AAFC03121742 35808 (25) – 36322 (23)

42352 (24) – 42889 (24)

43271 (24) – 43862 (23) 43352C.G, 43466T.C, 43829G.A

45866 (23) – 46465 (23)

72807 (23) – 73325 (23) 73024G.A, 73157C.T

90523 (23) – 91201 (23)

89455 (23) – 90037 (25) 89514T.G

APOA1 AAFC03114751 10221 (23) – 10671 (21)

10828 (22) – 11413 (23) 11357G.A

11797 (24) – 12393 (23) 11919T.G

APOB AAFC03076821 24087 (24) – 24606 (24) 24295C.T

38480 (23) – 39240 (23) 38827G.A, 39163G.A

AAFC03076822 12217 (24) – 12845 (24) 12324T.C

APOC2 AAFC03024850 16125 (21) – 16703 (22) 16569G.A

APOE AAFC03034452 11376 (24) – 12059 (23) 11400G.A, 11464C.T, 11735G.T

12364 (23) – 13091 (22) 12439C.T, 12664A.G

15330 (20) – 16125 (24) 15442C.G, 15532C.T, 15696C.T

LCAT AAFC03121473 36846 (24) – 37346 (24) 37122G.A

LDLR AAFC03045894 25 (24) – 621 (23)

820 (24) – 1226 (24)

AAFC03029857 25894 (22) – 26449 (23)

LIPC AAFC03129603 387 (24) – 984 (25)

1183 (22) – 1685 (23) 1327C.T, 1499G.A, 1599G.A

LIPG AAFC03021384 7511 (24) – 8149 (24) 8002G.A

8189 (23) – 8709 (23)

LPL AAFC03023665 34677 (26) – 35241 (25)

36200 (24) – 36832 (24)

PLTP AAFC03071797 2459 (24) – 2969 (23)

13354 (23) – 14092 (23) 13579C.T, 13994G.T

PON1 AAFC03037852 39031 (24) – 39543 (24) 39335G.T

64143 (23) – 64692 (24) 64207C.T, 64241G.A, 64283A.G

SCARB1 AAFC03038307 17200 (24) – 17666 (23) 17443A.C, 17539C.T

18769 (22) – 19430 (23)

AAFC03119800 6933 (23) – 7429 (21)

*Number in brackets is the length of forward or reverse primer for the amplicon.
doi:10.1371/journal.pone.0015203.t001
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set, several competing models may be ranked according to their

AIC, with the best model having the lowest AIC.

Results

SNPs and Haplotypes
As shown in Table 1, the 37 primer pairs used to amplify DNA

from the six F1 animals produced a total of 36 single nucleotide

polymorphisms (SNPs), including 8 in ABCA1, 2 in APOA1, 4 in

APOB, 1 in APOC2, 8 in APOE, 1 in LCAT, 3 in LIPC, 1 in LIPG, 2

in PLPT, 4 in PON1 and 2 in SCAB1, respectively. Nineteen of the

36 SNPs underlined in Table 1 are those selected to form a

multiplex SNP set for genotyping by the Sequenom assay design.

Among 246 animals genotyped, 38 (15.2%) received no calls for

APOA1 - AAFC03114751.1: c11919T.G. The PLTP -

AAFC03071797.1: g13994G.T marker was in Hardy-Weinberg

disequilibrium (P,0.05). Therefore, these two markers were

excluded from further analysis. As a consequence, the HAPLO-

VIEW analysis was only performed on four markers in ABCA1,

five SNPs in APOE and two markers in SCARB1 (Figure 1). Strong

linkage disequilibrium was detected between 2 of 4 ABCA1

markers: 73024G.A and 73157C.T (r2 = 100%) (Figure 1A),

between 3 of 5 APOE markers: 11464G.A, 15442G.C, and

15696C.T (r2 = 89%–97%) (Figure 1B) and between the two

SCARB1 markers, 17443C.A and 17539:T.C (r2 = 95%)

(Figure 1C). Linkage disequilibrium between the remaining SNPs

was low, ranging from 0% to 5% in ABCA1 and from 8% to 36%

in APOE gene.

Single-marker analysis and Bonferroni correction
Single-marker analysis revealed seven SNPs significantly

associated with nine phenotypes (P,0.05), including ABCA1 -

AAFC03037127.1:c27113G.A with CLA and AAFC03121742.

1:g43352C.G with SFD and SFA, APOA1 - AAFC03114751.

1:g11357G.A with CW and REA, APOB - AAFC03076821.

1:g39163G.A with CHOL, APOE - AAFC03034452.

1:g11400G.A with SFD, PLTP - AAFC03071797.1:c13579C.T

with CLA and PON1 - AAFC03037852.1:g64283A.G with KPH,

respectively (Figure 2). In other words, two SNPs were found for

SFD (Figure 2A and 2D), one for REA (Figure 2B), one for CW

(Figure 2C), one for KPH (Figure 2E), two for CLA (Figure 2F and

2H), one for SFA (Figure 2G), and one for CHOL (Figure 2I).

After Bonferroni correction, six of these associations remained

significant (adjusted P,0.05) and three were suggestive (adjusted

P,0.10).

These nine associations described above could then be classified

into three groups, namely, three quantitative trait modes (QTMs):

three with additive (Figure 2A–2C), three with dominant

(Figure 2D–2F) and three with overdominant effects (Figure 2G–

2I). Yet, the QTMs of these markers need to be further confirmed

in other populations. When a marker is associated with different

phenotypes, it might show the same or different QTMs. For

example, APOA1 - AAFC03114751.1:g11357G.A had additive

effects on both REA (Figure 2B) and CW (Figure 2C), while

ABCA1 - AAFC03121742.1:g43352C.G had an additive effect on

SFD (Figure 2A) but an overdominant effect on SFA (Figure 2G).

Furthermore, different genetic markers within a gene might

contribute to different phenotypes. For example, ABCA1 -

AAFC03037127.1:c27113G.A was significantly associated

with CLA in an overdominant QTM (Figure 2H), while

AAFC03121742.1:g43352C.G significantly affected SFD in an

additive QTM (Figure 2A) and SFA in an overdominant QTM

(Figure 2G).

Multiple-marker analysis and comparison of models for
different genetic networks

The seven markers derived from the RCT pathway were then

merged with other markers previously reported by Jiang et al. [24]

and combined into a multiple-marker analysis for each trait in

attempt to further improve understanding of genetic regulation of

fat deposition, fatty acid composition and body growth pheno-

types. Several models of genetic networks defined, as shown in

Figure 3, and our results suggested that the RCT pathway might

be involved in genetic networks for three phenotypes: KPH, REA

and SFD. Akaiki Information criterion (AIC) was used to compare

different models. The base (null) model (H0) contains the overall

mean and systematic effects due to sires, year, sex, and age, but

without any SNP/gene effect. In contrast, effects of genes

representing possibly different genetic networks are included in

alternative, competing models.

For KPH, we previously reported a genetic network involving

CRP and SLC27A2 genes, denoted as model A1 (Figure 3). The

present study showed that PON1 gene also contributes to the

network for KPH, thus forming a three-gene network, denoted as

model A2, for the trait (Figure 3). The AIC value was –424.15 for

the base model (A0), and it was 2433.15 for model A1 and

2440.86 for model A2. The AIC value assigned to each model

Figure 1. Linkage disequilibrium analysis for markers in the bovine ABCA1, APOE and SCARB1 genes. Pairwise linkage disequilibrium
relationship for these SNPs are based on r2 measurements.
doi:10.1371/journal.pone.0015203.g001
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facilitates ranking of competing models, with the best model

having the smallest AIC value. As such, the differences of AIC for

model A1 and model A2, as compared with the base model A0,

were 29.0 and 216.71, respectively, and the difference of AIC

between A1 and model A2 was 27.71. This comparison strongly

favors model A2 over model A1, and both models (A1 and A2)

over the null model A0.

In our previous study, FABP3 and PNPLA2 contributed to

formation of a two-gene genetic network for REA, denoted as

model B1, with dominant effects for both genes (Figure 3). The

present study identified a new genetic network with FABP3 and

APOA1 (model B2); the former gene with dominant effect while the

latter gene with additive effect (Figure 3). AIC-based model

selection favored models B1 and B2 almost equally, and both

Figure 2. Association of SNP markers with fat decomposition and muscle growth. P values are adjusted by Bonferroni correction. The
different capital letters between different genotypes within the same marker means the difference reaches the significance level of adjusted P,0.05,
while those with difference between genotypes marked by different lowercase letters is suggestive (adjusted P,0.10). The same letters between
genotypes indicate no suggestive/significant difference (adjusted P.0.10). The number within the bars represents the number of animals within each
genotype group.
doi:10.1371/journal.pone.0015203.g002

RCT Pathway for Fat Deposition and Muscle Growth
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models were favored over the base model. The AIC value was

132.2 for the base model (B0), and it was 127.02 for model B1 and

126.55 for model B2. The difference of AIC between B1 and B0

and between B2 and B0 was 25.18 and 25.65, respectively.

Practically, both models B1 and B2 could predict phenotypic

performance almost equally well.

The present multiple-marker analysis incorporated markers

derived from the RCT pathway and produced a two-gene (APOE-

BAK1) network (model C2) for SFD as an alternative to a three-

gene (TFAM-BAK1-CAPN1) network (model C1) identified previ-

ously (Figure 3). The new network includes one with dominant

effect (APOE1) and one with additive effect (BAK1), while the all

three genes in previously reported network had additive effects.

The difference of AIC between model C1 and model C0 and

between model C2 and model C0 were 215.11 and 214.32,

respectively. Thus, the AIC-based model comparison strongly

supported models C1 and C2 over the base model C0, but the

difference of AIC between models C1 and C2 were not decisive.

Overall, our results showed that the RCT pathway is mainly

involved in fat deposition (KPH and SFD) and muscle growth

(REA).

Discussion

Theoretically, lipoprotein pathways contain excellent candidate

genes for obesity-related traits because of their direct involvements

in transporting cholesterol, triglycerides, and fatty acids to and

from peripheral tissues. Other important lipid components are

decidedly interconnected with levels of circulating lipoproteins,

including saturated fat, which reduces expression of the LDLR,

leading to increased levels of circulating LDL [26–28]. In the

present study, we focused on genes involved with RCT pathway

and their associations with fat depot storages, fatty acid

compositions and overall body growth-related phenotypes using

cattle as a model organism. Our results identified 9 significant

RCT-pathway associations with CHOL, CLA, CW, KPH, REA,

SFA and SFD in a Wagyu x Limousin F2 reference population.

Obviously, the pathway-based candidate gene approach conduct-

ed in this study provides a fast and direct way to determine the

genetic variation that underlies complex phenotypes. At the same

time, our study also confirmed that genes involved in cholesterol

homeostasis are useful targets for investigating obesity in humans

[29–31].

Up to date, the vast majority of research to understand the

genetics of lipoprotein and lipid homeostasis has been directed

toward blood lipids. Human ApoE for example, contains two very

well known and common SNPs at amino acid positions 112 and

158, which are associated with decreased HDL, increased LDL,

and increased plasma cholesterol in circulation [32–33]. The

direct implications that these ApoE mutations have on intramus-

cular cholesterol are less apparent. Although skeletal muscle cells

attain fatty acids via LPL mediated hydrolysis of circulating

lipoproteins [34], the lipid compositions of muscle cells and the

blood might conceivably be reliant on different mechanisms. This

idea is supported by the results of the present study. Of all

significant associations determined in the present study, only the

APOB - AAFC03076821.1:g39163G.A was associated with muscle

cholesterol levels in an overdominant QTM mode. Furthermore,

this marker failed to be incorporated in the genetic network for

amount of cholesterol in muscle. This finding is an interesting

contrast to the high level of significance found among other lipid

traits and might be evidence that intracellular cholesterol is reliant

on mechanisms independent of blood pathways.

Noro and Kobayashi [35] hypothesized that the levels of

marbling in beef appear to be inversely correlated to HDL levels

and directly to LDL. As indicated above, marbling reflects the

dispersion of fat within the muscle, which is subjectively measured

as intramuscular fat stored in the longissimus muscle. Unfortunately,

Figure 3. Identification of genetic networks related to RCT pathway via Akaiki Information Criterion based model comparison. A1,
B1 and C1 are genetic networks previously reported by Jiang et al. (2009 with permission), while A2, B2 and C2 are newly identified networks in the
present study for KPH, REA and SFD, respectively. The x-axis and y-axis represent actual and predicted trait (genotypic) values. The numbers in arrows
represent substitution effects of one type of genotypes or allele for another one. In the graph, AIC = computed AIC value for a specific model, say A1,
and D= the difference of AIC values, say, between model A1 and the base model A0. The AIC values for the three base models, A0, B0 and C0, were
2424.15, 132.2, and 2653.61, respectively.
doi:10.1371/journal.pone.0015203.g003
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our present study could not provide any evidence to support the

hypothesis: none of the sequence variations in genes associated

with the RCT pathway was associated with variation in marbling.

In contrast, APOA1 - AAFC03114751.1:g11357G.A impacted

REA, which is a measurement of the size of the longissimus muscle.

This means that APOA1 gene might be involved in regulation of

muscle growth. In particular, both APOA1 and FABP3 genes

combine to affect REA. Just recently, Teltathum and Mekchay

[36] reported that APOA1 and FABP3 are two of five proteins

that are expressed in chicken muscle in an age dependent fashion.

The authors observed that the expression levels of APOA1 and

FABP3 proteins were negatively correlated with chicken aging

(p,0.05). This indicates that the genetic network established in the

present study for REA makes sense, because both APOA1 and

FABP3 genes are involved in muscle development and growth.

In summary, our present study revealed that sequence

variations of genes in the RCT pathway are associated with

KPH, REA and SFD. Both KPH and SFD are phenotypes related

to fat deposition, while REA is connected to muscle growth. From

the livestock production point of view, the SNPs evaluated in the

present study are strong candidates to join existing panels for

marker-assisted selection of meat quality phenotypes in beef cattle.

The markers identified in the present study might also have

implications beyond the field of animal breeding and improve-

ments and be directive in RCT pathway-related disease research.
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