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Simple Summary: Genetic parameters play an important role in designing a breeding program. Many
software and methods are used to estimate genetic parameters in livestock population. Multi-trait
models are efficiently used these days for productive traits, reproductive traits, milk traits, etc. These
models are more useful in the case of low heritability trait and with missing phenotypes. In this study,
Hanwoo cattle, an indigenous breed from South Korea, is studied for four carcass traits (back fat
thickness, carcass weight, eye muscle area, and marbling score). Single-trait and multi-trait models
are constructed using BLUPF90 software to estimate variance components. In addition, the effect of
genetic correlations among traits is scrutinized in multi-trait models for these traits.

Abstract: Hanwoo breed is preferred in South Korea because of the high standards in marbling and
the palatability of its meat. Numerous studies have been conducted and are ongoing to increase
the meat production and quality in this beef population. The aim of this study was to estimate and
compare genetic parameters for carcass traits using BLUPF90 software. Four models were constructed,
single trait pedigree model (STPM), single-trait genomic model (STGM), multi-trait pedigree model
(MTPM), and multi-trait genomic model (MTGM), using the pedigree, phenotype, and genomic
information of 7991 Hanwoo cattle. Four carcass traits were evaluated: Back fat thickness (BFT),
carcass weight (CWT), eye muscle area (EMA), and marbling score (MS). Heritability estimates of
0.40 and 0.41 for BFT, 0.33 and 0.34 for CWT, 0.36 and 0.37 for EMA, and 0.35 and 0.38 for MS were
obtained for the single-trait pedigree model and the multi-trait pedigree model, respectively, in
Hanwoo. Further, the genomic model showed more improved results compared to the pedigree
model, with heritability of 0.39 (CWT), 0.39 (EMA), and 0.46 (MS), except for 0.39 (BFT), which
may be due to random events. Utilization of genomic information in the form of single nucleotide
polymorphisms (SNPs) has allowed more capturing of the variance from the traits improving the
variance components.
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1. Introduction

Korean beef cattle Hanwoo is one of the four aboriginal breeds among Hanwoo, Chikso, Heugu
and Jeju Black. Its farming is streamlined due to high customer demand and competition with other
types of meat. Therefore, emphasis is laid on the improvement of carcass traits such as back fat
thickness (BFT), carcass weight (CWT), eye muscle area (EMA), and marbling score (MS) to enhance the
selection of animals for breeding programs. [1]. Utilization of DNA markers can enhance genetic gain.
These DNA markers can be used in predicting breeding values, and hence, can lead to accurate selection
of animals [2]. Genomic prediction via single nucleotide polymorphisms (SNPs) and phenotypes is an
emerging field which includes animal and plant breeding, risk prediction in human medicine, and
forensics. To help in conducting these breeding programs, estimation of genetic parameters plays an
important role, and they are generally evaluated based on single-trait models. However, these do not
account for the covariance among traits and may result in inaccurate estimates of breeding values,
leading to selection bias. Multi-trait models include multiple genetic effects within the same traits
or multiple traits within same groups. These are more explicit compared to single-trait analysis, as
they consider the information provided by genetic correlation while predicting the breeding value and
heritability of any trait [3–7]. These correlations specify the relationship among traits. Multiple-trait
genomic selection can increase accuracy of prediction [4]. In addition, using multi-trait models can
provide reliable and unbiased estimates of genetic parameters [2]. Various studies were conducted
focusing on single-trait analyses utilizing the Bayesian method, GBLUP, ssBLUP, etc., to evaluate the
best model in the estimation of genetic parameters.

Many traits are genetically correlated, such as reproductive traits, milk yielding traits, etc., and
have different heritabilities when calculated in single-trait and multi-trait models. Multi-trait models
can improve the estimations of traits with low-heritability trait or small population size [5,8]. Many
studies were conducted comparing single-trait and multi-trait analysis on productive, reproductive,
and milk traits using different software and methods. A study on 1567 Holstein was conducted
for reproductive and productive traits through DMU software [9]. Another work was conducted
on bulls through GBLUP, considering only genomic prediction utilizing QTL information [5]. To
our knowledge, multi-trait models are not used to improve the estimation of genetic parameters for
carcass traits in Hanwoo. Moreover, previous studies faced the limitation of small sample size that has
available genomic information. Better estimation of variance components that consider the genetic
correlations of important traits for breeding objectives will help in setting a total merit index for
accurate evaluation. Therefore, the main objective of this study was to compare genetic parameters
estimated by four different models, i.e., single-trait pedigree model (STPM), single-trait genomic model
(STGM), multi-trait pedigree model (MTPM), and multi-trait genomic model (MTGM), for four carcass
traits (BFT, CWT, EMA, and MS) in a large population of Hanwoo, Korean beef cattle.

2. Materials and Methods

2.1. Korean Hanwoo Cattle Data

Phenotypic data for carcass traits, i.e., back fat thickness (BFT), carcass weight (CWT), eye muscle
area (EMA), and marbling score (MS), were collected from 7991 commercial Hanwoo cattle, which
were slaughtered at the age of approximately 30 months (Table 1). All procedures followed in this
study were according to animal health and welfare guidelines approved by the Animal Care and Use
Committee of the National Institute of Animal Science (NIAS), Rural Development Administration
(RDA), South Korea (2018-293). Apart from animal, parent sire, and parent dam information, other
information such as birth year, birth month, slaughter year, slaughter place, age, sex, and herd was
also provided. Pedigree data were available for 38,731 animals. Animals with missing sire and dam
information were marked as 0 to avoid null value. Phenotypic data comprised back fat thickness (BFT)
in millimeters (mm), carcass weight in kilograms (kg), marbling score (MS) with grading 1–9, and eye
muscle area (EMA) in centimeter square (cm2). There were no missing phenotypes.
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Table 1. Descriptive statistics for BFT (back fat thickness), CWT (carcass weight), EMA (eye muscle
area), and MS (marbling score), respectively, in Hanwoo cattle for 7991 cattle.

Carcass Traits Mean SD Min Max Number of Animals

BFT (mm) 14.48 4.98 2 47 7991
CWT (kg) 440.94 52.36 159 692 7991
EMA (cm2) 96.29 12.13 34 156 7991
MS (1–9) 6.23 1.81 1 9 7991

Single nucleotide polymorphism (SNP) data comprised 53,866 SNPs from 7991 animals. Tissue
samples were genotyped using Illumina Bovine SNP50k. Quality check for the SNP data was done by
the PREGSF90 program of BLUPF90. In total, 143 SNPs were removed which had less than 0.90 call
rate, 488 SNPs with allele frequency <0.01 were removed, and another 324 monomorphic SNPs were
also eliminated. All animals had more than 0.90 call rate and there were no animals removed after
using a Hardy–Weinberg equilibrium threshold of 0.15 (default value in BLUPF90). Finally, 48,984
SNPs and 7991 animals were left for further analysis.

2.2. Statistical Analysis

As our data comprised much information therefore, statistical significance of fixed effects needed
to be analyzed. This was calculated through the ANOVA package present in R program (version 3.4.4,
R Core Team, 2013). Significant effects were used as fixed effects in further analysis. HYM (herd birth
year month), slaughter year month, slaughter place, and sex were taken as categorical values, whereas
age was taken as a continuous value [10,11]. Through the analysis, it was observed that age, sex, and
HYM had a significant effect on the studied traits. Hence, all the models were built taking age, sex,
and HYM (herd birth year and month) as fixed effects. All calculations and manipulation of the data
were performed using the R program (version 3.4.4, R Core Team, 2013).

2.3. Models

BLUPF90, a software that comprises a family of program in Fortran 90/95 for mixed model
computations in animal breeding [12]. In this analysis, missing values were allowed and replaced
with 0. The cleaning and processing of the data was done automatically by PREGSF90. First, the data
were renumbered and variance was estimated using RENUMF90. Then, the AIREMLF90 (average
information restricted maximum likelihood) [13,14] was used to estimate variance components and
calculate heritability and genetic correlations. These various components were then used to predict
estimated breeding values (EBV). Single-trait (ST) and multi-trait (MT) models (comprising all four
traits together) were built for both pedigree (STPM: Single-trait pedigree model) and genomic (STGM:
Single-trait genomic model) data (Table 2). These models were built to compare variance components
and estimated breeding value (EBV) estimated by various models [15]. These models included fixed
effects of contemporary group (HYM), sex, and age.

Table 2. Information used by four different statistical models.

Model Pedigree Phenotype Genotype Single Trait All Trait

STPM Yes Yes No Yes No
MTPM Yes Yes No No Yes
STGM Yes Yes Yes Yes No
MTGM Yes Yes Yes No Yes

(i) Single-Trait Model.
In the single-trait model (ST), genetic parameters were estimated for each single-trait (BFT, CWT,

EMA, and MS). A comparative study was also done between pedigree and genomic models. Hence,
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two single-trait animal models were built—one with pedigree and phenotype data (STPM) and the
other with pedigree, phenotype, and genomic information (STGM). A linear mixed model of BLUPF90
software was used for single-trait analysis as in Equation (1):

y = Xβ + Zα + r (1)

where y is the vector of phenotypic observations or traits (BFT, CWT, EMA and MS); β is the vector
of all fixed effects calculated above; α is the vector of random additive genetic effect for each animal
in STPM and STGM; r is the vector of random residual; and X and Z are the incidence matrices for
each corresponding effect. Variance components comprising additive genetic variance and residual
variance can be found in log file generated by software. EBV (estimated breeding value for pedigree
model) and GEBV (genomic estimated breeding value for genomic), along with s.e (standard error),
were also predicted.

(ii) Multi-Trait Model
A multi-trait model (MT) was built considering all the four carcass traits (BFT, CWT, EMA, and

MS) through BLUPF90 software. A comparative study was done between multi-trait pedigree (MTPM)
and multi-trait genomic (MTGM) models. Hence, two multi-trait animal models were built—one with
pedigree and phenotype data and the other with pedigree, phenotype, and genomic information. The
models and inferences were similar to the pedigree-based models described above, with the exception
that this model uses a genomic relationship matrix (G) created from the SNP markers instead of the
pedigree-based relationship (A). Following VanRaden [14], the G matrix was constructed using all
markers as in Equation (2):

G =
MM′∑

2pi

(
1− pi

) (2)

where M is a matrix of centered genotypes, and pi is the second allele frequency at locus i. The Variance
component comprising additive genetic variance and residual variance was predicted in log file. EBV
and GEBV, along with s.e, were obtained in solution file.

2.4. Variance Component and Heritability Estimation

EBVs (estimated breeding values) were predicted from phenotypic data by both STPM and MTPM.
The GEBVs were predicted by the GM using genotype (SNPs) and phenotype data for STGM and
MTGM. The variance component comprising genetic variance and residual variance was estimated.

Heritability was calculated as in Equation (3):

h2 =
σ2

g

σ2
g + σ

2
r

(3)

where h2 is heritability of a trait, σ2
g is genetic variance, and σ2

r is residual variance obtained. A
comparison was made on the heritability predicted by all models.

2.5. Correlation

In actual breeding, many traits that are correlated. Considering correlation among the traits
might result in more accurate GEBV, the genetic correlations were calculated based on covariance as in
Equation (4):

rg=
covg√
Vg1Vg2

(4)

where rg is the genetic correlation, covg is genetic covariance between trait 1 and trait 2, Vg1 is the
genetic variance of trait 1, and Vg2 is genetic variance of trait 2.
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3. Results

3.1. Trait Summary and Heritability

The descriptive statistics for the carcass traits analyzed in this work are listed in Table 1, along
with the frequency distribution of the phenotypic data in Figure 1. In the analyzed population the BFT
ranged from a minimum of 2 to 47 mm, the values for CWT from 159 to 692 kg, MS grades from 1 to 9,
and EMA from 34 to 156 cm2 for 7991 animals.
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3.1.1. Single-Trait Model

Variance components, i.e., additive genetic variance and residual variance, were estimated for
both STPM and STGM. Heritability was calculated from the variance components obtained through
STPM. It was 0.40, 0.33, 0.36, and 0.35 for BFT, CWT, EMA, and MS, respectively (Table 3). There was
a notable change in the estimated genomic heritability calculated through STGM when combining
pedigree, phenotypes, and genotypes of the animals. The calculated heritabilities were 0.39, 0.39, 0.39,
and 0.46 for BFT, CWT, EMA, and MS, respectively.

3.1.2. Multi-Trait Model

The multi-trait (MT) models were constructed considering all four traits together for both PM and
for GM. A comparative study was conducted between MTPM and MTGM (Table 3). A slight increase
in heritability was observed for the multi-trait pedigree model (MTPM) as compared to heritability
obtained for the single-trait pedigree model (STPM). The results show heritabilities of 0.41, 0.34, 0.37,
and 0.38 for BFT, CWT, EMA, and MS, respectively, for MTPM. Contrary, there was no significant
increase in heritability for MTGM as compared to STGM. Instead, a slight increase in genetic variance
was observed for BFT and EMA, with similar genetic variance for MS and a decreased variance for
CWT. Residual variance was slightly decreased for BFT and EMA, similar residual variance for MS,
and an increased variance for CWT, accounting for similar heritability for both STGM and MTGM.
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Table 3. Heritability and variance component calculated for single-trait and multi-trait model on pedigree and genomic data using AIREML in BLUPF90.

Heading Pedigree Model (PM) Genomic Model (GM)

BFT CWT EMA MS BFT CWT EMA MS

ST MT ST MT ST MT ST MT ST MT ST MT ST MT ST MT

h2 0.40 0.41 0.33 0.34 0.36 0.37 0.35 0.38 0.39 0.39 0.39 0.39 0.39 0.39 0.46 0.46
s.e 0.06 0.06 0.05 0.04 0.05 0.06 0.05 0.05 0.03 0.02 0.02 0.02 0.02 0.02 0.03 0.03
σ2

a 9.5 9.7 684.6 704.2 47.9 49.1 0.98 1.08 8.85 8.99 789.78 785.59 49.81 49.87 1.31 1.31
σ2

r 14.2 14.1 1407.5 1391.6 83.7 82.7 1.84 1.76 14.18 14.08 1220.2 1222.4 78.7 78.64 1.52 1.52

ST: Single-trait; MT: Multi-trait; BFT: Back fat thickness; CWT: Carcass weight; EMA: Eye muscle area; MS: Marbling score; σ2
a : Additive genetic variance; σ2

r : Residual variance, h2:
Heritability, s.e: Standard error.
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3.2. Genetic and Phenotypic Correlation

The genetic correlations were calculated by the multi-trait animal model using BLUPF90 software.
As correlations always occur between two or more traits, the multi-trait model was used to compute
genetic correlation among the four traits. Results obtained for both genetic and phenotypic correlation
are shown in Figure 2. For the pedigree and genetic models, a significant phenotypic correlation of
0.54 ± 0.01was found between CWT and EMA. Whereas a genetic correlation of 0.62 ± 0.08 was found
between EMA and MS for the pedigree model, and 0.51 ± 0.04 was found between EMA and MS for
the genomic model. A negative correlation of −0.23 ± 0.05 was also observed between BFT and EMA
for the genomic model.
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4. Discussion

Genetic parameters play a significant role in designing a breeding program. Therefore, a study
was conducted to evaluate single-trait and multi-trait models and to compare pedigree and genomic
models to highlight the significance of using SNPs. Variance components were estimated through the
above constructed model. Until now, many methods and software were used to estimate breeding
value. One such software is WOMBAT [16], in which 10,286 Hanwoo cattle were used with the pedigree
of 35,268 animals with no genomic information. They reported heritability for three traits: BFT (0.45),
CWT (0.29), and MS (0.62). It has been observed that heritability for CWT is reported more in our work,
whereas estimated heritability for BFT and MS was less than those estimated in the mentioned study.
Another study was conducted by the GWAS (genome-wide association study) method on 1011 Hanwoo
cattle and reported heritability of BFT (0.40), CWT (0.33), EMA (0.41), and MS (0.50) [17], which lies
close to our estimated genomic parameters. Park et al. reported heritabilities of BFT (0.50), CWT
(0.30), EMA (0.42), and MS (0.63), where basic statistics were analyzed through SAS 9.02 and genetic
parameters were estimated with ASReml [18]. Another work reported the heritabilities of BFT (0.29),
CWT (0.51), EMA (0.45), and MS(0.22) using the Restricted maximum likelihood (REML) procedure on
approximately 1100 Hanwoo cattle slaughtered at –30 months stage [19]. As compared to this work,
there was an increase in heritability for BFT and MS. Heritability of carcass traits such as EMA, BFT,
and MS in Japanese black cattle (Wagyu) was estimated at 0.02, 0.15, and 0.49, respectively [20]. A
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study conducted on another breed, i.e., 1756 Nellore cattle, estimated heritability for BFT (0.08), CWT
(0.17), and EMA (0.20) using Bayesian inference in BLUPF90 family programs [21].

In this work, BLUPF90 software was used to construct various models using pedigree, phenotype,
and genomic information. Four different models were created and compared for four traits. An
increased heritability was estimated by the genomic model (GM) as compared to the pedigree model
(PM), i.e., BFT (0.39), CWT (0.39), EMA (0.39), and MS (0.46), for both single-trait and multi-trait models.

Genetic correlation is the proportion of variance that two traits share due to genetic causes. It can
be positive or negative; a positive genetic correlation helps in improvement of the two traits, whereas a
negative correlation implies that selection of one trait can cause deterioration of both traits [7]. It also
helps in understanding the linkage between the genetically correlated traits. An increase in heritability
for the multi-trait model as compared to the single-trait model may be due to the incorporation of
information occurring by correlation among the traits in the multi-trait model. It can be observed
that genetic correlation among traits reached higher values than published in literature [18,22] with
approximately similar phenotypic correlation between BFT–CWT, CWT–EMA, and BFT–MS. Further,
the high genetic correlation between traits is advantageous in the multi-trait model for low heritability
traits, as it helps in understanding how closely or distantly traits are associated with each other [23,24].
A strong correlation was observed between EMA–MS (pedigree = 0.63, genomic = 0.51). Interestingly,
an increase in heritability estimates indicates that the multi-trait pedigree model can be a better than
the single-trait pedigree model due to correction of selection bias by the multi-trait model, as it uses
correlated trait information [9].

There was no increase in heritability for any traits from STGM to MTGM. This may be because the
heritabilities are not low for the traits, and all traits have full phenotype information available. An
increased genetic parameter in the genomic model infers that genomic information, i.e., SNPs, plays
a vital role in the prediction of breeding values and estimation of heritability in a population. It is
because these SNPs can comprehend Mendelian sampling, i.e., heritability in populations, based on
the expected proportion of genes shared between different types of relatives [6,18], and this accounts
for similar heritability for STGM and MTGM.

5. Conclusions

Accurate estimation of genetic parameters plays an essential strategic step for breeding programs,
which can help in selective breed improvement in a population. Increased heritabilities obtained by
MTPM as compared to STPM highlights the significance of correlation. Whereas, increased heritability
of the genomic model over the pedigree model infers a significant role of SNPs in breeding. This can
be seen through noticeable increased values of heritability and breeding values for marbling score.
Genetic parameters estimated through this work can be used for developing future breeding programs
involving genomic prediction methods.
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