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Simple Summary: Hanwoo is an indigenous cattle breed in Korea and popular for meat production
owing to its rapid growth and high-quality meat. Its yearling weight and carcass traits (backfat
thickness, carcass weight, eye muscle area, and marbling score) are economically important for the
selection of young and proven bulls. In recent decades, the advent of high throughput genotyping
technologies has made it possible to perform genome-wide association studies (GWAS) for the
detection of genomic regions associated with traits of economic interest in different species. In this
study, we conducted a weighted single-step genome-wide association study which combines all
genotypes, phenotypes and pedigree data in one step (ssGBLUP). It allows for the use of all SNPs
simultaneously along with all phenotypes from genotyped and ungenotyped animals. Our results
revealed 33 relevant genomic regions related to the traits of interest. Gene set enrichment analysis
indicated that the identified candidate genes were related to biological processes and functional terms
that were involved in growth and lipid metabolism. In conclusion, these results suggest that the
incorporation of GWAS results and network analysis can help us to better understand the genetic
bases underlying growth and carcass traits.

Abstract: In recent years, studies on the biological mechanisms underlying complex traits have been
facilitated by innovations in high-throughput genotyping technology. We conducted a weighted
single-step genome-wide association study (WssGWAS) to evaluate backfat thickness, carcass weight,
eye muscle area, marbling score, and yearling weight in a cohort of 1540 Hanwoo beef cattle using
BovineSNP50 BeadChip. The WssGWAS uncovered thirty-three genomic regions that explained
more than 1% of the additive genetic variance, mostly located on chromosomes 6 and 14. Among the
identified window regions, seven quantitative trait loci (QTL) had pleiotropic effects and twenty-six
QTL were trait-specific. Significant pathways implicated in the measured traits through Gene Ontology
(GO) term enrichment analysis included the following: lipid biosynthetic process, regulation of lipid
metabolic process, transport or localization of lipid, regulation of growth, developmental growth,
and multicellular organism growth. Integration of GWAS results of the studied traits with pathway
and network analyses facilitated the exploration of the respective candidate genes involved in several
biological functions, particularly lipid and growth metabolism. This study provides novel insight
into the genetic bases underlying complex traits and could be useful in developing breeding schemes
aimed at improving growth and carcass traits in Hanwoo beef cattle.
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1. Introduction

To date, demand for high-quality animal protein is increasing, bringing beef quality and consumer
satisfaction to the spotlight within the beef industry. Hanwoo cattle, which is unique to Korea,
is characterized by bountiful marbling of meat and quality attributes, such as tenderness, juiciness,
and good flavor [1]. The main aim of the Hanwoo beef industry is to increase the quantity and improve
the quality of the meat. To achieve this goal, estimated breeding values (EBVs) for carcass weight
(CW), backfat thickness (BT), eye muscle area (EMA), marbling score (MS), and yearling weight (YW)
are commonly included in the selection criteria of breeding programs [2]. Despite the importance of
genetic improvement for more targeted meat production in the Hanwoo cattle industry, little is known
about the underlying genomic architecture influencing these invaluable traits. In recent decades,
the advent of high throughput genotyping technologies has made it possible to perform a genome-wide
association study (GWAS) for the detection and localization of genomic regions associated with traits
of economic interest in different species [3]. Recent studies in beef cattle for growth and carcass traits
have revealed major quantitative trait loci (QTL) on chromosomes 6, 8, 12, 14 and 20 using a GWAS
approach [4–6]. However, more studies are needed to provide further insight into the chromosomal
regions, causal markers and candidate genes that affect related traits [7].

Among the approaches used for GWAS, the classical method is based on testing a single marker
at a time as a fixed effect in a single-locus mixed linear model, which includes the pedigree or genomic
relationship matrix to infer QTL from single SNP effects [8]. The main benefit of classical GWAS
(CGWAS) is the ease of significance testing; however, some of the challenges of this method include
false positives and the overestimation of QTL effects [9]. Consequently, it is likely to result in a
reduced fit of the data compared to methods that all SNPs are considered together [10]. Therefore,
Bayesian approaches were developed as they offer methods to mitigate these challenges [11], although
this increases computation demand. Nevertheless, in both single-marker and Bayesian procedures;
only animals with known phenotype and genotype are included in the analysis. On the other hand,
Wang et al. [10] proposed an alternative approach for GWAS, termed the weighted single-step GWAS
(WssGWAS), which combines all genotypes, phenotypes and pedigree data in one step (ssGBLUP).
It allows for the use of all SNPs simultaneously along with all phenotypes from genotyped and
ungenotyped animals. This approach is accomplished by the conversion of estimated breeding values
(GEBVs) to marker effects and weights, which are then used in an iterative process to update the SNP
solutions and improve the statistical power of QTL detection [10,12]. Furthermore, this method with
marker weights is faster, more accurate and simpler to implement for GWAS applications than other
multistep approaches [10]. Several recent studies have used a weighted single-step procedure to detect
effective QTL on production, carcass and reproductive traits in different species [13–16]. The integration
of GWAS results in quantitative traits with pathway and gene-set enrichment analyses in dairy cattle
has recently gained interest [17–19]. Complex traits are products of a series of multi-omics layers,
including genomics, epigenomics, transcriptomics, proteomics, and metabolomics. Incorporating
GWAS data with omics layers data has powerfully detected biological mechanisms of traits [20–22].
While the previous systems biology approach frequently focused on integration with transcriptomics
data [23], to further elucidate the complicated biology of the traits, the innovative integration of layers
of omics has been endorsed. Moreover, further insight into gene sets and biological pathways that
regulate related bovine traits might help to detect genes associated with growth and carcass traits.
Systems biology approaches and bipartite network analyses have mostly been used as complementary
approaches for extracting biological information from omics layers and increased our understanding
of the complex traits [17].



Animals 2020, 10, 1836 3 of 26

Several genes associated with carcass traits in Hanwoo beef cattle were identified in the literature
using either a single marker or the Bayesian model [24–28]; however, these studies considered neither
WssGWAS nor the detection of genomic regions associated with YW, which is an important trait to
identify when selecting young bulls [2]. Therefore, the purposes of this study were to perform GWAS
using a weighted single-step approach to detect genomic regions and candidate genes associated
with yearling weight and carcass traits in Hanwoo cattle and compare the results with previous
studies. In addition, harnessing this enormous work, here we extended a new viewpoint to appraise
the enrichment of WssGWAS data with miRNA-gene network reconstruction to further detect the
contribution of miRNA function in each trait. This integration enables us to survey post-transcriptional
regulation and also detect candidate genes and miRNAs that are essential in growth and carcass traits.

2. Materials and Methods

2.1. Ethics Statement

Semen and blood samples for genotyping were provided by the Hanwoo Improvement Center
of the National Agricultural Cooperative Federation. Ethics committee approval was not required
for semen and blood collection, as they were collected specifically in this study from the Hanwoo
Improvement Center (HIC), which was involved as a partner in this research project, which was
supported by a grant from the IPET Program (No. 20093068), Ministry of Agriculture, Food and Rural
Affairs, Republic of Korea. Pedigree data were recorded by the Korean Animal Registration Association,
data for growth traits were obtained from the Hanwoo Improvement Center, and data for carcass
traits were recorded by special inspectors, from the Institute of Korean Animal Products Evaluation,
at the slaughterhouse through the progeny testing program in Korea. Pedigree and phenotypic data
related to growth and carcass traits were generated following the protocol for the progeny test program,
as notified by the Ministry of Agriculture, Food and Rural Affairs, based on livestock law in Korea.
The Hanwoo Improvement Center, as an enforcement institution for the testing program for selecting
proven Hanwoo bulls, is obligated to maintain data and ownership of enrolled animals under notice.

2.2. Phenotypic and Pedigree Data

The data were obtained from phenotypes recorded of 15,279 animals (8966 bulls and 6313 steers)
for yearling weight, of which 5824 steers with carcass traits were provided by the Hanwoo Improvement
Center of the National Agricultural Cooperative Federation. The steers were born from 1989 to 2015
and castrated at 5 months of age. The pedigree information of 50,115 animals was used in the animal
model after tracing back the pedigree file to 11 previous generations. The phenotypic records were
available for backfat thickness (BT), carcass weight (CW), eye muscle area (EMA), marbling score (MS),
and yearling weight (YW) traits (Table 1). Marbling score was assessed using a categorical system
of nine classes ranging from the lowest score of one (no marbling) to the highest of nine (abundant
marbling). The collected records of MS before 2005 were removed because of mismatches with the
newly adopted 1-to-9-point marbling score scale. Carcass traits were measured according to the Korean
carcass grading procedure of the steers at—approximately 24 months of age, ribbed between the
13th rib and the first lumbar vertebrae after 24 h postmortem—and by notification No. 2014-4 of the
Ministry of Agriculture, Food, and Rural Affairs. YW trait for each animal was determined from the
weight (Wt) at the termination (t) of the test (body weight at ~12 months) and the previous weight
(Wt−1) recorded at a time point (t-1) before (body weight at ~6 months) the termination, according to
the equation described by Park et al. [29]:

YW =

[(
Wt − Wt−1

t − t−1

)
× (365− t−1)

]
+ Wt−1
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Table 1. Summary statistics for phenotypic data used to estimate variance components in Hanwoo cattle.

Trait (Units) Number of Animals with
Record (and Genotype) Mean (SE) Min. Max. SD CV%

BT (mm) 5824 (1151) 8.71 (0.05) 1.00 30.00 3.71 42.61
CW (kg) 5824 (1151) 343.96 (0.60) 158.00 519.00 45.61 13.26

EMA (cm2) 5821 (1151) 78.90 (0.12) 40.00 123.00 9.12 11.56
MS (score) 3991 (1151) 3.33 (0.03) 1.00 9.00 1.61 48.46
YW (kg) 15,279 (1540) 342.06 (0.38) 133.86 535.90 47.48 13.88

BT, Backfat Thickness; CW, Carcass Weight; EMA, Eye Muscle Area; MS, Marbling Score; YW, Yearling Weight.

2.3. Genotypic Data

The genotyping for 1679 animals was performed using the Illumina BovineSNP50K BeadChip
(Illumina Inc. San Diego, CA, USA). Animals with more than 10% missing data (n = 73), parent–progeny
conflicts (n = 11) and deviation error between pedigree and genomic relationships (n = 39), in addition
to a lack of phenotypic record for five traits (n = 16), were removed from the final analyses. Out of
45,304 SNPs, the quality control of genomic data excluded the SNPs with an unknown position
(302 SNPs) and those located on sex chromosomes (1150 SNPs). Additionally, the SNPs with call rates
lower than 0.98 (2677 SNPs), minor allele frequencies lower than 0.01 (6684 SNPs), and a maximum
difference between the observed and expected frequency of 0.15 as the departure of heterozygous
from Hardy–Weinberg equilibrium (31 SNPs) were excluded from the analyses [30,31]. In the final
analysis, genotypes on 34,460 SNP markers from 1540 animals (385 bulls and 1155 steers) were available.
All genotyped animals had records for YW, whereas four genotyped steers lacked records for carcass
traits. Consequently, the number of animals in the genotyped files for carcass traits and YW were 1151
and 1540, respectively.

2.4. Analysis of the Single-Step Genomic Association

The WssGBLUP was performed using BLUPF90 family software [32]. First, variance components
were determined using the pedigree-based univariate model obtained by Mehrban et al. [31].
A single-trait animal model to predict genomic breeding values was as follows:

y = Xb + Za + e

where, y is the vector of observations; b is the vector of fixed effects including batch-test place-sex
(163 levels) and birthplace (108 levels) for YW trait; batch-test place-slaughter date (391 levels, 201 levels
for MS), birth place (86 levels, 76 levels for MS) and slaughter age as a covariate for carcass traits
(except BT, as there is no significant effect of slaughter age); a is the vector of random animal effects
assumed to follow N (0, Hσ2

a), with H representing the additive relationship matrix that combines
pedigree (A) and genomic information (G); σ2

a is the additive genetic variance; e is the vector of random
residual effects that the distribution is assumed to follow N (0, Iσ2

e ), where I is an identity matrix
including all animals with records and σ2

e is the residual variance; X and Z are incidence matrices that
relate records to fixed effects and random animal effects, respectively.

The matrix H−1 was constructed [33] as follows using PREGSF90 program [34]:

H−1 = A−1 +

[
0 0
0 (0.95G + 0.05A22)

−1
−A−1

22

]
where A is a numerator relationship matrix; G is the genomic relationship matrix; A22 is the numerator
relationship matrix for genotyped animals. To avoid singularity problems, the coefficients of G and
A22 were considered 0.95 and 0.05, respectively [35].

The G-matrix was built using the information of genome-wide dense markers [35]:



Animals 2020, 10, 1836 5 of 26

G =
MDM′

2
∑m

i=1 pi

(
1− pi

) ,

where m is the total number of markers (34,460), pi is the allelic frequency of ith marker, M is the matrix
of centered genotypes and D is a diagonal matrix of weights for markers (initially D = I). According to
Zhang et al. [12], the following steps obtained estimates of SNP effect and weights for WssGWAS:

In the first iteration (t = 1) D = I, G(t) =
MD(t)M

′

2
∑m

i=1 pi (1−pi)
;

Predict GEBV (â) using ssGBLUP approach;
Markers effect (û) was estimated from GEBVs (â) as û(t) = D(t)M

′G−1
(t)â(t);

Calculate the common weight for a group of 20 adjacent SNP as
∑20

i=1 û2
i ;

Normalize SNP weights to keep the total genetic variance constant:

D(t+1) =
tr
(
D(t)

)
tr
(
D(t+1)

)D(t+1);

Reconstruct G(t+1) =
MD(t+1)M

′

2
∑m

i=1 pi (1−pi)
;

t = t + 1 and loop to step 2.

Lourenco et al. [36] indicated that direct genomic values (DGV) are a more relevant starting
point than GEBV because animals with different levels of accuracy may be included in genotyped
populations. Hence, GEBV (â) was replaced by DGV in this stage, which was obtained as follows [33]:

DGVi = −(
∑
j,i

gij GEBVj/gii)

where gij is the element in G−1 corresponding to relationships between animal i and j.
Updating SNP weights were continued for only two iterations in each trait because of the decreasing

accuracy of genomic breeding values in the succeeding iterations. According to Wang et al. [15],
the explained genetic variance of adjacent 20 SNPs on the genome was obtained as

var(
∑20

i=1 Ziûi)

σ2
a

× 100.

2.5. Selection of Relevant SNP Windows and Putative Candidate Genes Identification

Consecutive 20 SNPs, which explained 1% or more of the total genetic variance, based on the
WssGWAS, were considered as a genomic window associated with the studied traits [37–39]. The Map
Viewer tool for the bovine genome was used to identify positional candidate genes based on the
starting and ending coordinates of each window using the UMD 3.1.1 assembly as the reference map
(https://www.ncbi.nlm.nih.gov/genome/gdv/?org=bos-taurus). In order to understand the action of
these genes on the traits investigated the biological function of annotated genes were explored by
GeneCards (www.genecards.org). A Manhattan plot was created using the R software [40].

2.6. Functional Gene Set Annotation and Enrichment

Gene set annotation and enrichment analysis was performed using online programs, DAVID
(the Database for Annotation, Visualization, and Integrated Discovery) [41], PANTHER (Protein
ANalysis THrough Evolutionary Relationships) [42], version 14, and g:Profiler [43], comprehensive
web tools for scholars and researchers to understand the biological meaning of multiple genes and
gene ontology (GO) terms.

https://www.ncbi.nlm.nih.gov/genome/gdv/?org=bos-taurus
www.genecards.org
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2.7. Target Gene Prediction and Validation of Candidate miRNAs

The potentially targeted genes were predicted using miRWalk [44]. The platform integrates
information from different miRNA-target databases, including validated information and prediction
datasets: MiRWalk, miRDB, miRMap, miRNAMap, MicroT4, miRanda, miRBridge, PICTAR2,
RNAhybrid, Targetscan, PITA and RNA22. The target genes that were predicted by at least five
mentioned tools were chosen and submitted to DAVID, KEGG (the potential Kyoto Encyclopedia of
Genes and Genomes) [45,46], Reactome pathways and PANTHER databases for the enrichment target
genes of each miRNA.

2.8. Gene-Traits and miRNA–Gene Network Reconstruction

Gene-traits network was manually reconstructed based on traits as source nodes and genes as target
nodes in Cytoscape software. The miRNA–gene network was reconstructed based on the candidate
genes and the molecular interactions documented in related papers and online interaction databases.
Protein–protein interaction (PPI) data were abstracted from the Biomolecular Interaction Network
Database (BIND) [47], Database of Interacting Proteins (DIP) [48], Biological General Repository for
Interaction Datasets (BioGRID) [49], and Mammalian Protein–Protein Interactions Database (MIPS) [50].
In addition, pathway data were obtained from searches in pathway databases, such as STRING (Search
Tool for the Retrieval of Interacting Genes/Proteins) [51]. Each gene and miRNA was entered into the
database, and resulting interactions were imported to the networks using Cytoscape 3.7.2 (National
Institute of General Medical Sciences, Bethesda Softworks, Rockville, MD, USA) Cytoscape plugins
were done for analyzing unified interactive data. Genes and miRNAs in generated networks are
represented as nodes and the interactions between these nodes as edges.

3. Results

3.1. Summary Statistics

The five traits selected for GWAS analysis were backfat thickness (BT), carcass weight (CW), eye
muscle area (EMA) and marbling score (MS), and yearling weight (YW). The descriptive statistics of
these traits are provided in Table 1.

3.2. Association Analysis

In this study, we identified genomic regions associated with five measured traits in Hanwoo
cattle using WssGWAS. Manhattan plots showing the proportion of genetic variance explained by the
window of 20 adjacent SNPs (~ 1.39 Mb) for the traits under study are in Figure 1.

A summary of each SNP window that explained more than 1% of additive genetic variance and
positional candidate genes is presented in Table 2. Only genes inside the significant windows were
identified for yearling weight and carcass traits. A total of thirty-three relevant genomic regions were
found to be associated with considered traits in our study. Furthermore, the identified significant
windows explained totally 9.73, 42.31, 17.35, 8.03, and 33.44% of genetic variances for BT, CW, EMA,
MS, and YW, respectively. Six genomic regions on chromosomes 2, 7, 11, 13 and 16 for BT and
eleven genomic regions on chromosomes 7, 9 and 14 for CW were located. The largest QTL window
that explained 17.66% of genetic variance for CW was located in the region of 24.58–25.33 Mb on
chromosome 14. Analyses for EMA identified seven genomic regions as the most important loci;
they were distributed on chromosomes 1, 6, 9, 14 and 19, which together accounted for 17.35% of the
additive genetic variance. The same windows observed for EMA on chromosome 14 in the regions
of 22.09–23.61 Mb and 24.58–25.33 Mb appeared to also influence CW. Five genomic regions that
explain more than 1% of the additive genetic variance were observed on chromosomes 5, 14, 23 and
27 for MS. There were thirteen genomic regions associated with YW on chromosomes 2, 6, 10 and
14. Of these significant windows, four windows were located on chromosome 6, explaining 7.50%
of the total variance and seven windows were on chromosome 14, which explains 22.66% of total
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variance for YW. Significant QTL windows that were associated with more than one trait were defined
as pleiotropic QTL. The results indicated that ten large-effect windows located on chromosome 14 are
likely to be involved in one or more traits, in which seven QTL were common and the other three were
trait-specific. Using the Bos taurus genome map, numerous candidate genes within the significant
regions (SNP window)—some of which have been previously reported to be associated with the traits
of interest (BT, CW, EMA, MS, and YW) in several cattle breeds—were identified in our study. A total of
371 genes were annotated in these genomic regions according to the National Center for Biotechnology
Information (NCBI), which along with general information about results of WssGWAS for the analyzed
traits are presented in Table 2.

Figure 1. Manhattan plots of the percentage of additive genetic variance explained by windows of
20 adjacent SNPs for all studied traits using R software (version 4.0.2). BT, Backfat Thickness; CW,
Carcass Weight; EMA, Eye Muscle Area; MS, Marbling Score; YW, Yearling Weight.
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Table 2. Summary of SNP windows that explained >1% of genetic variance for all studied traits in Hanwoo cattle, with a list of annotated genes within each window.

Trait a Chr b QTL Region (Mb) c GV% d Candidate Genes e

BT 2 0.35–1.28 2.16
LOC104971094, LOC107132231, LOC107132232, LOC784948, LGSN, OCA2, LOC783772, LOC100301143,
HERC2, LOC104971093, TRNAE-CUC, NIPA1, NIPA2, LOC107132230, CYFIP1, TUBGCP5, TRNAE-UUC,
CCDC115, IMP4, PTPN18

BT 2 72.46–73.83 1.11 INHBB, LOC781979, LOC104971258, GLI2, LOC104971259, LOC100335292, TRNAL-CAA, TFCP2L1,
CLASP1, NIFK, TSN

BT 7 39.69–40.83 2.59

HK3, UIMC1, LOC510252, LOC100141185, LOC101905975, LOC784341, LOC533921, LOC782447,
TRNAR-CCU, ZNF346, FGFR4, LOC100336707, LOC540197, RAB24, PRELID1, MXD3, LMAN2, RGS14,
SLC34A1, PFN3, F12, GRK6, PRR7, DBN1, PDLIM7, DOK3, LOC104969157, DDX41, FAM193B,
LOC509184, LOC100139419, TMED9, B4GALT7, LOC107132625, N4BP3, RMND5B, LOC101905866, NHP2,
HNRNPAB, PHYKPL, COL23A1

BT 11 60.34–61.55 1.69 FAM161A, CCT4, COMMD1, B3GNT2, TMEM17, EHBP1, OTX1

BT 13 40.02–41.40 1.08 CFAP61, INSM1, RALGAPA2, LOC104973781, LOC104973782, KIZ, LOC100140493, XRN2, NKX2-4,
NKX2-2, LOC614124, PAX1

BT 16 34.80–35.91 1.08 LOC100297170, PLD5, LOC104974409, LOC104974410, BECN2, MAP1LC3C, EXO1, WDR64,
LOC101907876

CW 7 58.66–60.49 1.91 PRELID2, LOC107132647, LOC100138092, LOC788619, GRXCR2, SH3RF2, PLAC8L1, LARS, RBM27,
POU4F3, TCERG1, GPR151, PPP2R2B, TRNAC-GCA, STK32A

CW 9 62.93–64.58 1.98 TRNAE-UUC, LOC100336843, AKIRIN2, ORC3, RARS2, SLC35A1, CFAP206, C9H6orf163, SMIM8,
LOC104969583, GJB7, LOC107132774, ZNF292, LOC509829, CGA, HTR1E

CW 14 11.23–12.26 1.04 ASAP1, FAM49B, GSDMC

CW 14 16.55–17.80 4.46 NSMCE2, KIAA0196, SQLE, ZNF572, MTSS1, NDUFB9, TATDN1, LOC104968469, RNF139, TRMT12,
LOC531462, TMEM65, FER1L6, LOC101907615, FAM91A1, ANXA13

CW 14 17.85–19.46 2.00 LOC100848930, FBXO32, WDYHV1, ATAD2, ZHX1, C14H8orf76, FAM83A, TRNAM-CAU, LOC104974006,
TBC1D31, DERL1, ZHX2, LOC104974007, LOC100139328

CW 14 22.09–23.61 4.31 SNTG1, LOC614437, PCMTD1, LOC101906226, LOC104974020, ST18, LOC100141260, LOC101906592,
FAM150A, RB1CC1, LOC104974017, NPBWR1, OPRK1, ATP6V1H, RGS20

CW 14 24.58–25.33 17.66 XKR4, TMEM68, TGS1, LYN, RPS20, MOS, PLAG1, CHCHD7, SDR16C5, SDR16C6, PENK, LOC101907667

CW 14 25.36–26.15 2.43 LOC101907667, IMPAD1, FAM110B

CW 14 29.43–30.44 3.75 NKAIN3, LOC107133118, GGH, TTPA, YTHDF3, LOC101907975
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Table 2. Cont.

Trait a Chr b QTL Region (Mb) c GV% d Candidate Genes e

CW 14 30.54–32.16 1.30 MIR124A-2, BHLHE22, CYP7B1, LOC104974032, ARMC1, MTFR1, LOC104974034, PDE7A,
LOC101902754, LOC100299601, LOC104974036, DNAJC5B, TRNAY-GUA, TRNAA-AGC, TRIM55

CW 14 32.25–33.90 1.43
CRH, LOC790324, ZSCAN5B, RRS1, ADHFE1, C14H8orf46, MYBL1, VCPIP1, SGK3, LOC104974037,
MCMDC2, LOC784087, LOC100847363, TCF24, PPP1R42, COPS5, CSPP1, ARFGEF1, TRNAC-GCA, CPA6,
LOC101902584

EMA 1 127.77–128.74 2.27 GK5, TFDP2, LOC101903974, LOC511302, ATP1B3, GRK7, RNF7, LOC104968752, RASA2, LOC100294923,
ZBTB38, LOC107131348, LOC104971030, LOC104971031, PXYLP1, LOC104971032

EMA 6 0.1–1.03 1.00 APELA, LOC101905490, LOC513842, LOC101907917

EMA 6 54.52–55.64 1.11 NOT_FOUND

EMA 9 57.18–58.10 2.22 TRNAC-ACA, LOC782527, EPHA7

EMA 14 22.09–23.61 1.75 SNTG1, LOC614437, PCMTD1, LOC101906226, LOC104974020, ST18, LOC100141260, LOC101906592,
FAM150A, RB1CC1, LOC104974017, NPBWR1, OPRK1, ATP6V1H, RGS20

EMA 14 24.58–25.33 7.98 XKR4, TMEM68, TGS1, LYN, RPS20, MOS, PLAG1, CHCHD7, SDR16C5, SDR16C6, PENK, LOC101907667

EMA 19 48.90–50.02 1.00
LOC100140873, TEX2, TRNAG-UCC, LOC104975109, LOC101902037, PECAM1, MILR1, POLG2, DDX5,
MIR3064, CEP95, SMURF2, TRNAE-CUC, KPNA2, TRNAR-CCG, C19H17orf58, BPTF, TRNAE-UUC,
NOL11, TRNAS-AGA, PITPNC1, LOC101905668

MS 5 95.87–97.74 2.24 ATF7IP, LOC100139060, GRIN2B, EMP1, GSG1, FAM234B, HEBP1, GPRC5D, GPRC5A, DDX47, APOLD1,
CDKN1B, LOC101901926, GPR19, CREBL2, LOC101902028, LOC107132517, DUSP16

MS 14 5.01–5.69 1.00 LOC100850800, COL22A1, FAM135B

MS 23 30.27–31.28 2.03 ZNF389, ZSCAN16, ZNF165, OR2B6, HIST1H2BB, HIST1H2AG, bta-mir-2379, ZNF184, ZNF391,
POM121L2, PRSS16, HIST1H2BN, ZNF322, ABT1

MS 27 16.11–17.15 1.28 LOC101905556, LOC101905700, ZFP42, TRNAG-UCC, TRIML2, TRNAF-AAA, TRIML1, LOC507011

MS 27 19.17–20.48 1.46 MICU3, FGF20, LOC104976064, TRNAC-ACA, MSR1, LOC104976066, TUSC3

YW 2 42.77–43.75 1.71 LOC785568, LOC615401, ARL6IP6, TRNAY-GUA, PRPF40A, FMNL2, LOC101902790

YW 6 37.26–38.45 1.36 FAM13A, LOC104972724, LOC100847719, HERC3, NAP1L5, PYURF, PIGY, HERC5, HERC6, PPM1K,
ABCG2, LOC781421, PKD2, SPP1, MEPE, IBSP, LOC104972726

YW 6 39.50–40.67 2.68 LOC782905

YW 6 44.67–45.42 1.14 PPARGC1A
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Table 2. Cont.

Trait a Chr b QTL Region (Mb) c GV% d Candidate Genes e

YW 6 48.80–49.97 2.30 LOC107132565

YW 10 50.75–51.96 1.56 LOC107132854, FAM81A, MYO1E, CCNB2, RNF111, SLTM, FAM63B, LOC533308, ADAM10, LIPC,
LOC101904602, LOC101903685, TRNAE-UUC

YW 14 16.55–17.80 1.70 NSMCE2, KIAA0196, SQLE, ZNF572, MTSS1, NDUFB9, TATDN1, LOC104968469, RNF139, TRMT12,
LOC531462, TMEM65, FER1L6, LOC101907615, FAM91A1, ANXA13

YW 14 22.09–23.61 2.54 SNTG1, LOC614437, PCMTD1, LOC101906226, LOC104974020, ST18, LOC100141260, LOC101906592,
FAM150A, RB1CC1, LOC104974017, NPBWR1, OPRK1, ATP6V1H, RGS20

YW 14 24.58–25.33 9.96 XKR4, TMEM68, TGS1, LYN, RPS20, MOS, PLAG1, CHCHD7, SDR16C5, SDR16C6, PENK, LOC101907667

YW 14 25.36–26.15 1.74 LOC101907667, IMPAD1, FAM110B

YW 14 29.43–30.44 2.64 NKAIN3, LOC107133118, GGH, TTPA, YTHDF3, LOC101907975

YW 14 30.54–32.16 2.62 MIR124A-2, BHLHE22, CYP7B1, LOC104974032, ARMC1, MTFR1, LOC104974034, PDE7A,
LOC101902754, LOC100299601, LOC104974036, DNAJC5B, TRNAY-GUA, TRNAA-AGC, TRIM55

YW 14 32.25–33.90 1.43
CRH, LOC790324, ZSCAN5B, RRS1, ADHFE1, C14H8orf46, MYBL1, VCPIP1, SGK3, LOC104974037,
MCMDC2, LOC784087, LOC100847363, TCF24, PPP1R42, COPS5, CSPP1, ARFGEF1, TRNAC-GCA, CPA6,
LOC101902584

a BT, Backfat Thickness; CW, Carcass Weight; EMA, Eye Muscle Area; MS, Marbling Score; YW, Yearling Weight. b Chromosome. c Position of QTL region. d Percentage of genetic variance
explained by 20 SNPs windows. e Genes identified according to genome assembly UMD_3.1.
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3.3. Functional Gene Set Annotation and Enrichment

GO terms functional annotation was first performed to identify the biological meaning and
the systematic features of these candidate genes using DAVID, PANTHER, and g:Profiler databases.
The gene ontology contains nine categories: Molecular Functions (MF), Biological Process (BP), Cellular
Component (CC), Kyoto Encyclopedia of Genes and Genomes (KEGG), Reactome pathways (REAC),
WikiPathways (WP), MicroRNAs (MIRNA), comprehensive resource of mammalian protein complexes
(CORUM) and Human Phenotype Ontology (HP). The significantly different GO terms of candidate
genes for each trait are presented in Figure 2 (p < 0.05), including the 6, 9, 4, 8 and 11 Go terms related
to BT, CW, EMA, MS, and YW, respectively. Pathway enrichment analysis revealed that the genes
involved in BT, CW, EMA, MS, and YW were enriched in the Rap1 signaling pathway, Neuroactive
ligand–receptor interaction, Cell adhesion molecules and PECAM1 interactions, and MAPK signaling
pathway and RAF/MAP kinase cascade, respectively. Functional gene set annotation and enrichment
were presented in Table 3.

Figure 2. Functional enrichment analysis or gene set enrichment analysis, on input gene list for related
traits using g: Profiler (https://biit.cs.ut.ee/gprofiler). MF: Molecular Functions, BP: Biological Process,
CC: Cellular Component, KEGG: Kyoto Encyclopedia of Genes and Genomes, REAC: Reactome
pathways, WP: WikiPathways, MIRNA: MicroRNAs, CORUM: comprehensive resource of mammalian
protein complexes and HP: Human Phenotype Ontology.

https://biit.cs.ut.ee/gprofiler
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Table 3. Gene Ontology, KEGG and Reactome pathways where the candidate genes are significantly enriched (p < 0.05).

Traits a Term ID Term Name Genes p-Value

BT

GO:0006869 lipid transport PRELID1 0.010233961

GO:0010876 lipid localization PRELID1 0.014172362

GO:0005319 lipid transporter activity PRELID1 0.019846208

GO:0006629 lipid metabolic process FGFR4 0.025006995

GO:0008289 lipid binding COMMD1, PFN3 0.047311441

GO:0008610 lipid biosynthetic process FGFR4 0.035303187

KEGG:04015 Rap1 signaling pathway RGS14 0.047961872

CW

GO:0001558 regulation of cell growth SGK3 0.044446017

GO:0007173 epidermal growth factor receptor signaling pathway FAM83A 0.039752933

GO:0016049 cell growth POU4F3 0.035059849

GO:0035264 multicellular organism growth PLAG1 0.030366765

GO:0035265 organ growth PLAG1, CGA 0.025673681

GO:0040007 growth PLAG1, POU4F3, CGA, SGK3 0.020980597

GO:0048589 developmental growth PLAG1, POU4F3, CGA 0.016287514

GO:0060560 developmental growth involved in morphogenesis POU4F3 0.01159443

GO:0005515 protein binding ARFGEF1, ATAD2, LYN, MYBL1, RB1CC1, AKIRIN2, CRH, CGA,
NPBWR1, PENK, PPP1R42, RGS20, TCERG1, ZHX1, ZHX2 0.006901346

KEGG:04080 Neuroactive ligand-receptor interaction CGA, HTR1E, NPBWR1, OPRK1, PENK, CRH 0.039862933

EMA

GO:0006629 lipid metabolic process LYN, SDR16C5 0.049805624

GO:0019216 regulation of lipid metabolic process LYN 0.042803519

GO:0033993 response to lipid DDX5 0.043747312

GO:0008289 lipid binding TEX2 0.049508111

KEGG:04514 Cell adhesion molecules LOC100140873, PECAM1 0.04067771

REAC:R-BTA-210990 PECAM1 interactions LYN, PECAM1 0.049805624
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Table 3. Cont.

Traits a Term ID Term Name Genes p-Value

MS

GO:0006629 lipid metabolic process CREBL2 0.01889403

GO:0006869 lipid transport APOLD1, MSR1 0.041826385

GO:0008610 lipid biosynthetic process CREBL2 0.021157549

GO:0010876 lipid localization APOLD1 0.016791777

GO:0019915 lipid storage MSR1 0.025742261

GO:0045444 fat cell differentiation CREBL2 0.019486141

GO:0008289 lipid transport APOLD1 0.017945142

GO:0071814 protein-lipid complex binding MSR1 0.016404143

KEGG:04010 MAPK signaling pathway DUSP16, FGF20 0.014863145

REAC:R-BTA-5673001 RAF/MAP kinase cascade DUSP16, FGF20, GRIN2B 0.016791777

YW

GO:0001558 regulation of cell growth ADAM10, SGK3 0.046130564

GO:0016049 cell growth ADAM10 0.043928692

GO:0035264 multicellular organism growth PLAG1 0.04172682

GO:0035265 organ growth PLAG1 0.039524949

GO:0040007 growth ADAM10, PLAG1, SGK3 0.037323077

GO:0040008 regulation of growth ADAM10, SGK3, MYO1E 0.035121205

GO:0048589 developmental growth PLAG1 0.032919333

GO:0070848 response to growth factor IBSP, RNF111 0.030717462

GO:0071363 cellular response to growth factor stimulus RNF111 0.02851559

GO:0005515 protein binding ADAM10, ARFGEF1, LYN, MYBL1, PPARGC1A, RB1CC1, CRH,
MEPE, NPBWR1, PKD2, PENK, PPP1R24, RGS20, SPP1 0.026313718

GO:0140096 catalytic activity, acting on a protein
ADAM10, CCNB2, COPS5, CPA6, GGH, HERC3, HERC5,

HERC6, LYN, MOS, PCMTD1, PPM1K, RNF111, RNF139, SGK3,
VCPIP1, NSMCE2

0.048130564

a BT, Backfat Thickness; CW, Carcass Weight; EMA, Eye Muscle Area; MS, Marbling Score; YW, Yearling Weight.



Animals 2020, 10, 1836 14 of 26

3.4. Prediction of miRNA-Target Genes

Among the detected regions, three miRNAs were identified: bta-miR-124a, bta-miR-3064,
and bta-miR-2379. The identified miRNAs suppressed 42 of the candidate genes, including ABT1,
ATF7IP, ATP6V1H, B3GNT2, C14H8orf46, C19H17orf58, CCDC115, CDKN1B, CGA, CLASP1, DERL1,
EXO1, FAM135B, FAM234B, FAM83A, FAM91A1, GRK7, HEBP1, NIFK, NIPA1, NKAIN3, NSMCE2,
PPARGC1A, PPM1L, PPP1R42, PRELID1, PRELID2, PXYLP1, RALGAPA2, RNF111, RNF7, SGK3,
SLC31A1, SLTM, SMURF2, ST18, STK32A, TFDP2, TMEM68, TRIM55, ZHX1 and ZNF346 for all traits.

3.5. Gene-Traits and miRNA–Gene Network Reconstruction

The global gene-traits network of all related genes and traits was rebuilt. The reconstructed
network includes 366 genes and five traits as nodes and 486 edges between traits and related genes
(Figure S1). Twenty-three genes were common between the three traits (CW, EMA, and YW), 61 genes
were common between CW and YW, 2 genes were common between BT and EMA, 1 gene was common
between BT and MS and the other genes were not common between traits. For the bipartite network
(miRNA-gene), we compiled candidate genes and miRNAs (nodes) involved in each trait based
on literature mining and PPI resources that were abstracted: BIND, DIP, BioGRID, MIPS, STRING,
GRNs, and miRNA–targeted genes. Briefly, miRNAs–gene networks are commonly represented
in an undirected graph format, with nodes representing miRNAs or genes and edges representing
interactions (genes–genes and miRNAs–targeted genes). Based on the current knowledge of interactions
in databases, the interactions were detected for nodes and edges in the candidate genes and miRNAs
for each trait separately. Five major miRNA–gene networks are illustrated in Figure 3, Figure 4 and
Figures S2–S4 (for BT, 50 genes and 2 miRNAs as nodes and 75 interactions as edges; for CW, 78 genes
and 3 miRNAs as nodes and 163 interactions as edges; for EMA, 31 genes and 1 miRNAs as nodes and
58 interactions as edges; for MS, 15 genes and 1 miRNAs as nodes and 16 interactions as edges; for YW,
78 genes and 3 miRNAs as nodes and 144 interactions as edges were observed).

Figure 3. The network of backfat thickness related genes and miRNAs using Cytoscape software
(version 3.7.2; www.cytoscape.org); each node denotes a gene (rectangle) and miRNA (triangle) and
edges depict miRNA–gene relationships.

www.cytoscape.org
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Figure 4. The network of carcass weight related genes and miRNAs using Cytoscape software (version
3.7.2; www.cytoscape.org); each node denotes a gene (rectangle) and miRNA (triangle) and edges
depict miRNA–gene relationships.

4. Discussion

Carcass traits and growth traits, such as yearling weight, have a crucial role in livestock due to
their influence on meat production. Therefore, it is important to identify the genomic regions that
contribute most to the genetic variations for these traits. This study is the first to report a weighted
single-step genome-wide association study of five economically important traits (backfat thickness,
carcass weight, eye muscle area, marbling score, and yearling weight) in Hanwoo cattle. The weighted
single-step method is useful for GWAS because it allows one to integrate the information of genotyped
and non-genotyped animals simultaneously, and the use of different weights for SNPs according to
their importance for the trait of interest, which leads to improving QTL detection [10]. In addition, this
method provides the possibility to work with sets of consecutive SNPs (SNP windows), which can
be effective in finding QTL regions due to linkage disequilibrium (LD) compared to single-SNP
analysis [12]. In fact, when the number of animals with both phenotypes and genotypes is relatively
small, the WssGWAS is a relatively better method than classical GWAS for improving the statistical
power of QTL detection. Furthermore, the combination of GWAS results and pathway and gene network

www.cytoscape.org
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analyses provide additional insights into the ability to identify genomic regions influencing these
traits, especially when the detected genes are involved in various biological processes. In other words,
systems biology is a systemic level approach to study an all-around understanding of complicated
biological systems outside the molecular-level scale [52]. Instead of analyzing individual components
or aspects of the organism, such as a cell nucleus or metabolism, systems biologists focus on all aspects
and the interactions between them as part of one system. These roles are eventually responsible for
an organism’s form and its functions. Unlike previous GWAS studies, the present study identifies
genes and miRNAs networks within different traits. This study proposes a computational method
to detect the integration of weighted single-step GWAS and bipartite networks; that is, groups of
detected miRNAs and their detected target genes, that are believed to take part in post-transcriptional
gene regulation in different traits, such as BT, CW, EMA, MS, and YW. Therefore, this method of
reconstructing miRNA–gene networks could help to clarify the complicated biological procedures.

In the WssGWAS analysis, thirty-three QTL regions (window of 20 adjacent SNPs) were associated
with at least one of the five traits. These regions are distributed on chromosomes 1, 2, 5, 6, 7, 9, 10,
11, 13, 14, 16, 19, 23, and 27 (Table 2). The largest number of significant genomic regions associated
with different traits was found on chromosome 14 (10 QTLs), followed by chromosome 6 (6 QTLs),
explaining a relatively large percentage of the total additive genetic variation. The results obtained
from the WssGWAS for BT (Table 2) indicated that the trait-specific windows with large-effect are
located on chromosomes 2, 7, 11, 13 and 16. One-hundred genes were annotated in these genomic
regions according to NCBI, some of which have been previously reported to be involved in metabolism
and transport of lipids, and comprise the PRELID1, FGFR4, COMMD1, PFN3 and RGS14 genes
(Table 3). For BT, the large-effect window was located in the region of 39.69–40.83 Mb on chromosome
7, explaining 2.59% of additive genetic variance where the five promising candidate genes and their
biological functions were highlighted. For instance, the fibroblast growth factor receptor 4 (FGFR4) gene
is a transmembrane tyrosine kinase receptor that may play essential roles in the regulation of hepatic
bile acid and lipid metabolism [53]. PRELID1 (PRELI Domain Containing 1), another gene located in the
same region, is a protein-coding gene that regulates lipid accumulation in the mitochondria by shuttling
phospholipids in a lipid-specific manner across the intermembrane space [54]. Other important genes
within this window include HK3 (Hexokinase 3), which is crucial for glucose metabolism pathways and
phosphorylates glucose to produce glucose-6-phosphate; the RGS14 (Regulator of G Protein Signaling
14) gene, which encodes a member of the regulator of G-protein signaling family and as a GTPase
activating protein (GAP), it increases the rate of conversion of GTP to GDP; PDLIM7 (PDZ and LIM
domain 7), which is known to regulate muscle development and function, and associates with—and
localizes to—actin filaments in fibroblasts via its PDZ domain [55]. A positional candidate gene located
on chromosome 2 in the position of 72.46–73.83 Mb is INHBB (Inhibin Subunit Beta B), which displayed
high expression in human adipocytes [56] and thus is probably related to BT trait. Our results differ
from those reported by Mokry et al. [57] who detected significant SNPs for BT on chromosomes 1, 3, 10,
13, and 19 of Canchim animals. Similarly, Lee et al. [58] described regions containing potential QTLs
for BT on chromosomes 13 and 16 of Hanwoo cattle; however, the regions were distant from those
found on chromosomes 13 and 16 in the present study. Moreover, other regions on chromosomes 6,
10, 13, 14, 17, and 22 using the three GWAS approaches have previously been reported to be likely
associated with BT in a composite beef cattle breed [59].

In the BT network, bta-miR-124a and bta-miR-2379 suppressed the EXO1 gene that encodes a
protein with RNase H activity and 3’ to 5’ exonuclease activity. In addition, bta-miR-124a suppressed
the CLASP1 and NIFK genes, and bta-miR-2379 suppressed the NIPA1, PRELID1, RALGAPA2,
and SLC31A1 genes. The NIFK gene is a hub gene that encodes a protein that interacts with the other
proteins, such as a protein that may bind RNA and play a role in the cell-cycle process. Gene Ontology,
KEGG and Reactome pathway analyses for this trait include lipid transport (the directed motion of lipids
into, within, out of, or between cells or a cell); lipid localization (the maintenance or transportation of
lipids to a specific location); lipid transporter activity; lipid metabolic process (the pathways involving
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lipids and chemical reactions which includes fatty acids, soaps, waxes, and other long-chain bases);
lipid binding (interacting non-covalently and selectively with a lipid); lipid biosynthetic process
(the pathways and chemical reactions leading to the formation of lipids); the Rap1 signaling pathway
(the pathway that controls diverse procedures, such as cell–cell junction formation, cell adhesion,
and cell polarity, which also regulates MAPK (MAP kinase) activity).

Concerning CW, eleven large-effect windows (explaining more than 1% of additive genetic
variance) were identified, in order of significance, on chromosomes 14, 9, and 7. Of these, seven
genomic regions on chromosome 14 are probably pleiotropic QTLs, which are located at positions
16 Mb, 22 Mb, 24 Mb, 25 Mb, 29 Mb, 30 Mb, and 32 Mb. Only pleiotropic QTLs located in the
positions of 22.09–23.61 Mb and 24.58–25.33 Mb were common between CW, EMA, and YW; the other
pleiotropic QTLs were to influence CW and YW. A total of 136 genes were annotated in these genomic
regions for CW and, according to NCBI, some of them were associated with EMA and YW. This was
expected due to the high positive genetic correlation between CW and YW (0.76) and between CW
and EMA (0.56), which was estimated in Hanwoo cattle [31], indicating that the same genes were
controlling these traits. The most relevant pleiotropic QTL was identified on chromosome 14 at
24.58–25.33 Mb, which explained 17.66% of additive genetic variance in CW, 7.98% in EMA, and 9.96%
in YW. These were harbored by 12 candidate genes (Table 2), among which XKR4, TMEM68, LYN,
PLAG1, CHCHD7, and PENK were noteworthy. This QTL window was also detected in several
association studies on carcass and growth traits in beef cattle, which confirms the reliability of our
results. For instance, previous studies reported genetic variants in PLAG1 (pleiomorphic adenoma gene
1) for their associations with bovine stature [60], carcass weight [4,28], birth weight [61], in addition to
early life bodyweight and peripubertal weight [62] in different cattle breeds. The PLAG1 gene has been
associated with meat tenderness in Nellore cattle [13] and has a pleiotropic effect and can, therefore, be
an excellent candidate for a large-effect gene because it acts on different traits.

In an earlier study on Hanwoo cattle using the Illumina BovineSNP50 BeadChip, Lee et al. [28]
detected potential candidate genes, such as PLAG1, CHCHD7, and FAM110B, that were associated
with CW, confirming our findings. Other genes, located on chromosome 14 at 24 Mb, contains LYN,
XKR4, and TMEM68, which have been associated with feed intake, growth and meat tenderness in
cattle [13,63]. The XKR4 gene has been reported to be associated with rump fat thickness in indicine
and composite cattle [64]. Another study also identified that TGS1 and LYN genes influenced carcass
traits in cattle [65] and the PENK gene has been associated with fat thickness and intramuscular fat in
a composite beef cattle breed [59]. Further important genes, located on other regions of chromosome
14 include the ASAP1 gene, related to meat quality traits in three French beef cattle breeds [66];
the SGK3 gene, which is involved in the regulation of cell growth and growth according to gene
ontology (Table 3); the CRH gene that plays important roles for growth and development in mammals,
including cattle. Bhuiyan et al. [25] stated that two coding SNPs (synonymous and missense) in CRH
are significantly related to the CW in Hanwoo, and another study of the same breed [67] reported that
a missense mutation of CRH was significantly associated with the EMA. According to our findings
and previous studies, most discovered QTLs related to many economically important traits in cattle
have been observed on chromosome 14. Several genome-wide significant QTL on chromosome 14 for
growth, milk, and meat production traits in cattle have been published in recent years. For instance,
pleiotropic QTL located at 23–26 Mb was associated with body weight and calving ease in Brangus,
Gelbvieh, and Simmental cattle [68]. For backfat thickness and rump fat thickness, QTL have been
reported on chromosome 14 in Bos indicus and Bos taurus cattle by Bolormaa et al. [69]. The region on
chromosome 14 showing an association with milk fatty acid is the region harboring DGAT1, which is
known to influence milk production traits [70] and milk fat composition [71]. Hence, chromosome 14
is a hot spot for several causal variants among chromosomes for the studied trait.

A positional candidate gene on chromosome 7 (58.66–60.49 Mb) is SH3RF2 (also known as
PPP1R39), which, like the myostatin gene, negatively regulates muscular tissue growth in the event of
low expression levels related to muscular hypertrophy. In a study in the Blonde d’Aquitane breed,
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the authors revealed that the SH3RF2 gene was identified as one of the genes responsible for the double
muscle presence in animals [72]. Some of the identified candidate genes in genomic regions act as
olfactory receptors, including the genes located in the window of chromosome 2 at the 0.35–1.28 Mb
position (LOC104971094, LOC107132231, LOC107132232, and LOC784948) in the BT trait, in addition
to LOC100138092 and LOC788619 located in the window of chromosome 7 at 58.66–60.49 Mb for
the CW trait. Olfactory receptors contribute to the change of GDP (guanosine diphosphate) to GTP
(guanosine triphosphate), which are regulators of G proteins, since GDP and GTP can be used as energy
sources and are responsible for transferring energy within the cell [73]. Moreover, olfactory receptors
are known to act on adipose tissue and adipocyte differentiation, increasing fat accumulation [74],
consequently affecting meat traits. One region for CW was identified in the region of 62.93–64.58 Mb
on chromosome 9 and harbors the positional candidate gene AKIRIN2. This gene is a nuclear factor
and previous reports showed that the AKIRIN2 was a potential functional candidate gene for meat
quality in pigs and beef cattle [75–77].

Regarding the CW network, bta-miR-124a suppressed C14H8orf46, PPP1R42, STK32A,
and ZHX1 genes; bta-miR-2379 suppressed ATP6V1H, DERL1, FAM91A1, NSMCE2, PRELID2,
SGK3, and TMEM68 genes; bta-miR-3064 suppressed the CGA gene. The PLAG1 (Pleomorphic
adenoma gene 1) gene is a hub gene that encodes a zinc finger protein (ZFP) with nuclear localization
signals [78]. Gene Ontology, KEGG, and Reactome pathways analysis for this trait included the
regulation of cell growth (any process that modulates the rate, extent, frequency, and direction of cell
growth); epidermal growth factor receptor signaling pathway (sets of molecular signals initiated by
binding of a ligand to the tyrosine kinase EGFR receptor (ERBB1) on the surface of a cell whose pathway
ends with the regulation of a downstream cellular procedure, such as transcription [79]); cell growth
(the biological process whereby a cell increases in size over time through the biosynthetic and accretion
production of matter similar to that already present); multicellular organism growth (the enhancement
in size of a whole multicellular organism, in contrast to cell growth); organ growth (the enhancement
in mass or size of an organ); growth; developmental growth (the enhancement in mass or size of
whole organism, a part of a cell or an organism that has the specific outcome of the development of
the organism over time) [80]; protein binding (interacting non-covalently and selectively with other
protein complexes or protein); neuroactive ligand–receptor interaction [81] (all known genes encoding
receptors for each ligand were detected from this ligand–receptor interaction list).

Analyses for EMA identified seven relevant QTL regions on chromosomes 1, 6, 9, 14, and 19,
of which seventy-two genes were annotated in these genomic regions. A positional candidate gene for
EMA on chromosome 19 (48.90–50.02 Mb) is PITPNC1, which acts as a cytoplasmic phosphatidylinositol
transfer protein and is involved in lipid transport [82], and the ZBTB38 gene (Zinc finger and BTB
domain containing 38) located in the region of 127.77–128.74 Mb on chromosome 1 is an important
candidate gene for the selection of body measurement traits in native Chinese cattle breeds through
marker-assisted selection [83].

In the EMA network, bta-miR-2379 likely suppressed ATP6V1H, SMURF2, and TMEM68 genes.
The PLAG1 (Pleomorphic adenoma gene 1) gene is a hub gene in this network similar to the CW
network. Gene Ontology, KEGG, and Reactome pathway analyses for this trait included lipid metabolic
process (the pathways and chemical reactions related to lipids); regulation of the lipid metabolic process
(the biological process which modulates the extent of the pathways and chemical reactions involving
lipids); response to lipids (the biological process which results in an alteration in activity or state of an
organism or a cell); cell adhesion molecules (they are proteins or glycoproteins expressed on the cell
surface that play an important role in a large array of biological processes, including inflammation,
hemostasis, embryogenesis, the immune response, and the development of neuronal tissue).

The thirteen windows with large effects obtained for YW are located on chromosomes 2, 6, 10,
and 14, and according to NCBI, 128 genes were annotated in these regions, 88 of which were common
to CW as mentioned in Table 2. Moreover, there are numerous candidate genes on chromosome
6 in the region of 37.26–38.45 Mb associated with growth traits in cattle, among which PPM1K,
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ABCG2, PKD2, SPP1, MEPE, and IBSP were notable in this study. PPM1K has been associated with
increased mid-point metabolic weight and carcass weight and also decreased residual feed intake, feed
efficiency conversion ratio, and marbling score [84]. This gene plays a key role in cellular survival
and development by regulating mitochondrial permeability transition pore function, as well as a
complicated phosphorus metabolic process [85]. The ABCG2 gene (ATP-binding cassette, subfamily G,
member 2) is known to be involved in fat synthesis and showed associations with weaning weight,
yearling weight, and direct birth weight in Brangus beef cattle [6], as well as milk composition in
dairy cattle [86]. The PKD2 gene (polycystic kidney disease 2) affects body weight in Australian
Merino sheep [87]. Other genes containing the SPP1 gene (secreted phosphoprotein 1) that have
been reported to be associated with carcass weight, yearling weight, and post-weaning growth [88]
include the IBSP gene (integrin-binding sialo protein), which is involved in the processing of the
bone mineralization; MEPE gene (Matrix extracellular phosphoglyco protein), which demonstrates
different expressions in the RNA-Seq analysis of heifer pregnancy from pre- and post-puberty Brangus
heifers [89]. Another significant QTL region for YW was identified on chromosome 6 at 44.67–45.42 Mb,
which harbors the PPARGC1A gene and is considered to be a positional candidate gene for carcass traits
in Hanwoo cattle [25,90]. PPARGC1A (Peroxisome proliferator-activated receptor-γ coactivator-1α)
plays a significant role in many aspects of glucose and fat metabolism and energy balance. It has also
been demonstrated that PPARGC1A was significantly associated with body weight and average daily
gain in Chinese native cattle [91], milk fat yield in Holstein cattle [92], as well as with growth, and meat
quality traits in Brangus steers [93].

Consistent with our findings, some previous studies have identified genes in relevant QTL regions
on chromosome 6 that are associated with various traits in different cattle breeds. For example,
Snelling et al. [94] found that most SNPs associated with direct growth are located on chromosome
6 in crossbred beef cattle. In another study across ten US cattle breeds using 50K SNP chip data,
Saatchi et al. [68] also identified a large-effect pleiotropic QTL located on this chromosome at 37–42 Mb.
Besides, other studies have reported the QTL region on chromosome 6 related to average daily gain in
Nellore cattle [95], milk production [96] and reproductive traits [97] in dairy cattle.

For the YW network, it is possible that bta-miR-124a suppressed C14H8orf46, PPARGC1A,
and PPP1R42 genes, bta-miR-2379 suppressed ATP6V1H, FAM91A1, NSMCE2, SGK3, and TMEM68
genes and bta-miR-3064 suppressed RNF111 and SLTM genes. PENK gene is a hub gene that encodes a
pre-proprotein, which is proteolytically processed to produce multiple protein products. Gene Ontology,
KEGG, and Reactome pathways analyses for this trait included regulation of cell growth; cell growth;
multicellular organism growth; organ growth; growth; developmental growth; response to growth
factor (the biological process which results in an alteration in activity or state of an organism or a cell);
cellular response to growth factor stimulus; protein binding; catalytic activity on a protein (catalytic
activity that acts to change and modify a protein).

The GWAS of MS using the weighted single-step method resulted in five significant QTL windows
located on chromosome 5, 14, 23, and 27, which were trait-specific QTL for the MS trait (Table 2).
These regions explained a relatively high percentage of genetic variance for MS and fifty genes were also
annotated according to NCBI. The largest QTL window, which explained 2.25% of genetic variance, was
captured on chromosome 5 (95.87–97.74 Mb) and harbors a number of candidate genes (APOLD1 and
CREBL2) involved in the metabolism and transport of lipids (Table 3). Magalhães et al. [13] identified
two large-effect windows associated with MS on chromosome 5 of Nellore Cattle, but the regions were
distant from those observed in the present study. Additionally, potential QTL regions associated with
marbling score in Hanwoo cattle have been recently identified on chromosomes 2, 12, 16, and 24 by
Bedhane et al. [24], which differ with the regions identified in our study. Among the identified genes
for MS on chromosome 14 at the position 5.01–5.69 Mb, COL22A1 has been previously reported to be
associated with milk fat percentage and milk yield in the Chinese Holstein population [98]. A positional
candidate gene located in the region of 19.17–20.48 Mb on chromosome 27 is FGF20 (fibroblast growth
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factor 20), which is a member of the FGF family, and belongs to the FGF9 subfamily with abundant
roles in development, organogenesis, tissue repair, homeostasis, and tissue fibrosis [99].

Additionally, in the MS network, bta-miR-124a suppressed ABT1 genes. Bta-miR-2379 suppressed
ATP6V1H, FAM91A1, NSMCE2, SGK3, and TMEM68 genes, and bta-miR-3064 suppressed RNF111 and
SLTM genes. HIST1H2AG gene is a hub gene consisting of basic nuclear proteins and is responsible for
the nucleosome structure of the chromosomal fiber in eukaryotes. Gene Ontology, KEGG, and Reactome
pathways analyses for this trait included lipid metabolic process; lipid transport; lipid biosynthetic
process; lipid storage (the maintenance and accumulation in lipid tissues or cells. Lipid source can
be accumulated during the early developmental phase for utilization and mobilization in a later
phase of development, fat cell differentiation (the biological process in that an unspecialized cell saves
specialized features of an adipocyte, an animal connective tissue cell specialized for the storage and
synthesis of fat), protein–lipid complex binding (interacting non-covalently and selectively with a
protein–lipid complex), and in the MAPK signaling pathway (the MAPK (mitogen-activated protein
kinase) cascade is a highly conserved module which is involved in various cellular functions, including
cell differentiation, cell proliferation, and cell migration).

5. Conclusions

To our knowledge, this is the first report on the integration of weighted single-step GWAS and
network analyses for yearling weight and carcass traits in Hanwoo cattle, which revealed thirty-three
relevant genomic regions related to the traits of interest. Significant enrichments for biological
processes and KEGG pathway analyses, including the lipid biosynthetic process, regulation of the lipid
metabolic process, transport or localization of lipids, regulation of growth, developmental growth,
and multicellular organism growth were obtained. It is interesting to note that a number of the common
genes we detected are involved in metabolic and cellular processes that have possible impacts on the
studied traits. These results suggest that the incorporation of GWAS results and bipartite network
analyses can illuminate the genetic architecture underlying complex traits. This method could enhance
the identification of biological mechanisms and respective candidate genes, and in addition, could be
useful in breeding schemes aimed at improving growth and carcass traits in Hanwoo beef cattle.
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