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Summary 

Wagyu beef cattle are recognised for their intrinsic ability to produce high-quality meat product 

due to high intramuscular fat. Wagyu beef is targeted to premium markets and the amount of 

intramuscular fat largely determines the value of the carcase. Achieving high intramuscular fat 

requires the animals to spend a relatively long period in a feedlot (350-600 days).Therefore, 

animals that do not produce a highly marbled carcase may have a cost of production above the 

value of the carcase. The ability to identify animals that will produce a superior product early 

in the feedlot process would allow Wagyu production to become more efficient. Another 

important aspect of the production system is the amount of feed consumed and feed efficiency 

of individual animals. The ability to identify animals that are efficient converters of nutrients 

into high quality beef would also improve the efficiency of the system. Early identification of 

Wagyu steers that will produce a high value carcase would allow their selection for finishing 

in a feedlot. The metabolic mechanisms that allow Wagyu cattle to achieve carcases with high 

marbling and efficiently are poorly understood. A metabolomics approach could help 

understand the biology of muscle and fat deposition and lead to the discovery of biomarkers to 

identify individuals that will produce high value carcases. For the reasons above, this thesis 

explored the relationships between plasma metabolite profiles and carcase attributes (mainly 

marbling) and residual feed intake (RFI) in Wagyu crossbred steers. The term blood 

metabolome has been used in the first two chapters of the thesis however it is commonly used 

interchangeably with the term plasma metabolome.  

The objective of the present thesis was to understand the relationships between plasma 

metabolites and important carcase traits to potentially enable the early selection of animals that 

will produce a superior product in an efficient manner. The thesis consists of 4 studies using 

data sourced from 3 experimental groups of Wagyu crossbred steers at a commercial feedlot in 

Queensland. Chapter 2 investigated the relationship between the plasma metabolome measured 

at 65, 119 or 163 days on feed (DOF) and carcase traits at slaughter. Chapter 3 examined 

changes in the plasma metabolome from 196 to 432 DOF. Chapter 4 developed prediction 

models of marbling using animal farm data and plasma metabolomics with machine learning. 

Chapter 5 explored the effect of adjusting feed efficiency for carcase fat on the relationship 

with the plasma metabolome in Wagyu crossbred steers. 

The aim of Chapter 2 was to (1) examine the relationships between the plasma metabolome 

and carcase traits with a focus on marbling, and (2) determine the effect of the length of time 
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cattle were in a feedlot on the plasma metabolome measured relatively early in the feedlot (65, 

119 or 163 DOF). Blood samples were obtained from 181 Wagyu crossbred steers between 

300 and 400 days before slaughter. The samples were analysed using 1H-NMR spectroscopy 

and 35 metabolites were identified. The results showed 7 metabolites positively correlated with 

marbling (3-hydroxybutyrate, propionate, acetate, creatine, histidine, valine, and isoleucine; P 

≤ 0.05). Carcase weight and growth rate were negatively associated with 3-hydroxybutyrate 

and growth rate was negatively associated with creatine (P ≤ 0.05) and positively associated 

with aspartate (P ≤ 0.05). Glucose, anserine and arginine showed a significant interaction 

between marbling and DOF (P ≤ 0.05). Sire had the greatest influence on the relative 

concentrations of metabolites and carcase and production traits. These findings suggested the 

plasma metabolome has the potential to help in the understanding of fat and muscle metabolism 

in Wagyu steers. The plasma metabolome may also help in the identification and selection of 

Wagyu steers that will produce a high value carcase. 

The objectives of Chapter 3 were to (1) compare the metabolome at two distant time points 

(196 and 432 DOF) and (2) determine the relationship between the metabolome and marbling 

at those two sampling points in Wagyu crossbred steers (n = 167). There was a positive 

relationship between the relative concentration at 196 and 432 DOF for 35 of the 38 

metabolites. From 196 to 432 DOF, there was an increase in the relative concentrations of 21 

metabolites involved in muscle, energy and glucose metabolism whereas 13 metabolites 

involved in lipid metabolism decreased (P < 0.05). There were 14 metabolites that had a 

significant relationship with marbling. Of these, glucose, propionate, 3-hydroxybutyrate and 

lipids are involved in energy and fat metabolism. The metabolites 3-hydroxybutyrate and 

acetate were positively associated with marbling at 432 DOF but not at 196 DOF. The findings 

in Chapter 3 indicated that the plasma metabolome of Wagyu crossbred steers can change with 

time in a feedlot. Results confirmed that the metabolome has the potential to be applied to 

prediction of marbling in Wagyu cattle. However, the relationship between marbling and the 

plasma metabolome appears to be affected by sampling time, presumably because of the 

developmental stage and maturity of the animals.  

Chapter 4 combined metabolomics and farm-collected data with machine learning to predict 

which Wagyu crossbred steers will produce a high value carcase. This involved the use of 

Naïve Bayes, classification and decision trees, and random forest predictive modelling. Five 

datasets were used which included routinely recorded animal farm data such as sire, Wagyu 

percentage, weaning weight and feedlot body weight, together with metabolomics data. The 
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prediction models that used farm or feedlot data produced accuracies of 73% and 63% to 

identify animals with high marbling, respectively. The datasets that included both sampling 

time points with either identified metabolites or all metabolic features (peaks) yielded 

accuracies of up to 67.4%. The model that included animal farm data, feedlot weight data, and 

two metabolomic sampling points produced accuracy of 69.6%. These findings demonstrated 

the potential of machine learning to identify high or low marbling animals. The greatest 

accuracy was achieved with information on sire, Wagyu percentage and weaning weight. The 

combination of animal farm data, feedlot data, and metabolomic data in machine learning has 

shown potential to improve the efficiency of Wagyu production.  

Animals with high feed efficiency tend to have leaner carcases with reduced marbling. The 

objective in Chapter 5 was to evaluate the relationship between the plasma metabolome and 

residual feed intake (RFI) corrected for carcase fat as a measure of feed efficiency. Blood 

samples were obtained from 140 crossbred Wagyu steers early (78 DOF) and late (313 DOF) 

in a feedlot and 1H-NMR spectroscopy identified 36 metabolites. Alternative measurements of 

RFI were calculated to account for important carcase traits such as marbling and subcutaneous 

fat. The metabolites methionine, phenylalanine, serine, and histidine had a negative 

relationship (P < 0.05) with all measures of RFI. Metabolites involved in lipid metabolism 

such as choline, glycoprotein acetyls and lipids all had a positive correlation with RFI (P < 

0.05) at 313 DOF. Alternative feed efficiency measurements, such as residual gain and gain to 

feed, showed more significant relationships between metabolites than the adjusted RFI traits. 

It was concluded that the relationship between the relative abundance of plasma metabolites 

and RFI was not influenced significantly after adjusting for carcase fat. Chapter 5 showed 

earlier in the feedlot (78 DOF), feed efficiency was more correlated with metabolites involved 

in protein than lipid metabolism. However, the opposite was observed later in the feedlot 

process when steers were more mature the metabolites that were related to lipid metabolism 

were more correlated. The findings in Chapter 5 suggested that a metabolomics approach could 

help to understand the biology of feed efficiency and marbling in Wagyu steers. The approach 

might also assist in the identification and selection of animals that efficiently convert feed 

resources to tissue deposition including marbling.  

The information contained in this thesis shows important relationships exist between the 

plasma metabolome and carcase traits and feed efficiency in Wagyu crossbred steers. This 

information has potential to be used to identify and select Wagyu steers that will produce a 

high value carcase with long-term feeding in a feedlot. The adjustment of RFI for carcase fat 
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traits has also shown potential in the selection of Wagyu steers with high feed efficiency and 

which still produce a marbled carcase. This is highly important when addressing the social, 

economic, and environmental imperatives of sustainable Wagyu beef production.
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Chapter 1: Literature review 

 

1.1 Introduction 

The production of Wagyu cattle in Australia is becoming more common and the input 

requirements for this system are extremely large due to the amount of time spent on feed and 

the amount of nutrients the animals consume. The demand for high quality beef is increasing 

and the consumer is beginning to require a higher quality product, which is what Wagyu beef 

produces. The intramuscular fat deposition within the muscle is one of the key traits in regard 

to meat quality. The increased intramuscular fat takes longer to be deposited into the muscle, 

which requires larger inputs; some of the animals that are in the Wagyu production system do 

not meet the quality requirements to ensure the production system is economically viable. 

There are many new technologies (genomics, metabolomics, lipidomics, proteomics) 

developed and data being reordered which is moving toward the prediction of marbling early 

in the animal’s life; however, there is a large research gap in the scientific literature as to the 

relationships between these technologies. The ability to utilise one of the technologies to 

improve the current selection methods would be incredibly beneficial to Wagyu production in 

Australia.  

The Australian beef industry is vast and encompasses a significant part of the agricultural 

production in terms of farm-gate production, land use, export, and total profit 1. There are many 

beef cattle production methods in Australia such as grass-fed and grain-fed (feedlot) which will 

be discussed further throughout the review. There are also multiple markets available to 

producers, and each has specific criteria for the cattle that are supplied to them. The feedlot 

industry contributes to approximately half of the annual cattle slaughter and can be separated 

into the supermarket (60-80 days on feed; DOF), short-fed (90-120 DOF), mid-fed (120-150 

DOF) or long fed (over 200 DOF) 2. Wagyu feedlot cattle most often are fed for 350 to 650 

days to achieve high marbling and, therefore, the cost of production is high 1. The value of the 

animals is influenced by many factors including carcase weight, marbling, subcutaneous fat 

thickness, and fat cover whilst complying with other factors such as sex, muscling and frame 

size 3.  

The increased demand for animal protein has required the development of new technologies 

and methods to identify specific breed attributes and how to manage beef cattle efficiently. 

New technologies including genomics and sensor technologies are widely researched and 
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adopted in the beef industry 2. There are other new technologies and approaches being 

investigated for their potential to improve cattle breeding and management such as 

metabolomics 4,5. In addition, metabolomics can improve the understanding of the interaction 

between metabolites and body tissues, which reflect on the phenotype including growth rate, 

feed efficiency, and marbling in beef cattle 4,6. Metabolomics is at technique that encompasses 

a variety of methods and technologies to examine the metabolites present in a range of 

biological samples including blood, urine and extracts from meat and faeces. Therefore, 

metabolomic data could allow selection criteria to be placed on desired traits as currently 

carcase traits such as marbling are not measured until the animal is slaughtered, and it is 

difficult to select animals early in the feedlot process. Identification using metabolomics could 

enable selection of superior animals earlier 7. The metabolome refers to many small molecules 

that are present in a biological sample such as sugar phosphates, amino acids, nucleotides, 

organic acids, small hormones and lipids 8. Metabolomics is a continually developing field and 

has been applied to many fields from biomedical research through to product quality and 

traceability services 8. The application of metabolomics to livestock production is becoming 

more evident as the technologies that are used continue to evolve 4,6. 

Metabolomics and genomics could be used in a systems biology approach to identify animals 

that will produce a more desirable phenotype, which may allow beef production systems to 

become more efficient. The Metabolomics Society (https://metabolomicssociety.org) explains 

that each individual component of a biological system influences the phenotype of the animal 

as summarized in Figure 1.1. Thus, genes encode for the production of proteins, which then 

drive the production and utilization of metabolites, so the final metabolome is a reflection of 

the interaction between the genome and external factors such as the environment and 

microbiome. Therefore, examining the effect of metabolites on the overall system is an 

important aspect. For example, it has been theorized that a single base change in the genome 

can result in a tenfold increase in the concentration of a small molecule, thus resulting in a 

phenotypic change in the animal 9.  
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Figure 1.1: Illustration of the interactions that influence phenotype, which then translates to 

the metabolites (Metabolomics Society, 2013) 

 

The present literature review provides an overview of the beef cattle industry, the potential role 

and applications of metabolomics, and machine learning in beef cattle. The review also 

describes the analytical techniques used in metabolomics and applications to multiple fields 

such as human health, food, toxicology, and beef cattle. The final section of the review includes 

information on metabolomics of marbling, feed efficiency and the potential of machine 

learning in beef cattle prediction models. 

1.2 The Wagyu Cattle industry 

Wagyu beef cattle are native to Japan and were imported into Australia for their intramuscular 

fat (IMF) content (marbling) and eating quality 10,11. The assessment of carcase quality is 

conducted using a method referred to as “chiller assessment’. The chiller assessment describes 

the meat characteristics in terms of meat colour, fat colour, marbling, eye muscle area (EMA) 

and rib fat thickness 12. A trained assessor grades individual carcases for these and other 

specific targeted markets. Aus-meat™ 13 and MSA 14 are the prevailing grading systems in 

Australia. The latter predicts eating quality assessed by consumer tests, which is then predicted 

from carcase grading traits and other factors such as dentition, use of hormonal growth 
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promoters, and marketing pathway (direct consignment from farm or via auction markets). The 

IMF is measured by chemical analysis 15 or by marbling scores measured subjectively using 

scoring cards (reference images) with scores ranging from 0 to 9+ in Aus-Meat and 100 to 

1100 in the MSA grading systems. Wagyu cattle can often achieve marbling above the higher 

threshold of these grading systems and the Wagyu industry has been using other objective 

measurements such as hyperspectral cameras to measure the proportion of the EMA covered 

by fat flecks 16. 

The marketing of Wagyu beef is based on IMF content (marbling) 10,11. Currently, there is 

limited knowledge on the biology and metabolic processes that allow Wagyu animals to 

achieve high marbling. Nguyen, et al. 17 highlighted multiple factors that influence the ability 

of the animal to deposit IMF within the muscle, these factors include genetic, sexual, nutritional 

and management factors. Diet and animal metabolism is one of the most important factors 

determining IMF. Therefore, the examination of the metabolic profile of animals may allow an 

enhanced understanding of IMF deposition. The metabolome of cattle may provide additional 

insight into the biology of marbling. This review examines current literature on biomarkers 

that are indicative of marbling and could potentially be used to select Wagyu cattle for 

marbling.  

1.2.1 Global Beef Production and Markets 

Beef consumption varies across the world and is dependent on multiple factors including 

economic growth and consumer purchasing power, population growth, dietary preferences and 

cultural and religion background of consumers, competition from other proteins, trade policies 

and market access and the resilience of supply chains. The global per capita beef consumption 

has decreased since 2007, and is expected to further decline by 5% by 2030 but the overall 

demand for beef continues to increase 18. However, the demand for high value meat cuts is 

predicted to increase due to population growth and changes in consumer preferences. Asia is 

the only region where the consumption of beef is projected to increase 18. The global beef price 

has been increasing at a greater rate than both chicken and pork, relative index beef prices have 

more than doubled while poultry and pork have increased at a rate of 51% and 19 %, 

respectively. These trends suggest that for beef production to grow it will be required to become 

more efficient to help consumers make the choice for beef rather than other protein meats such 

as chicken or pork.   
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There is a wide range of beef markets accessible from Australia with all cattle breeds being 

accepted. Figure 1.2 illustrates the main country Australian beef is exported to was Japan in 

the 2018/2019 year, with a total of 302,756 tonnes tones 19. 

 

 

Figure 1.2: Australian top beef exports for the period of 2018-2020 20 

 

1.2.2 Australian Grading and Marketing 

Multiple factors determine which markets feedlot beef can be sold into, including marbling 

score measured at the 12/13th rib in Wagyu, hot standard carcase weight (HSCW), P8 fat, age, 

eye muscle area, rib fat measurement, and carcase maturity measured through ossification. The 

P8 is a site where the fat is measured on the carcase as can be seen in Figure 1.3.  

 

 

 

 

 

 

Figure 1.3:  The yellow point is where the P8 site is assessed on cattle and the green point is 

where the 12/13th Rib measurement is taken from (Adapted from (Victoria 21)) 
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The MSA system is used to ensure the eating quality and paddock to plate traceability of beef. 

Individual carcases are ticketed and graded by carcase weight, sex, tropical breed content, 

hanging method, ossification, marbling, rib fat (3mm minimum), pH, and meat colour 14. Each 

of these traits influence the tenderness and overall liking of the consumer. Marbling is an 

integral part of all marketed beef and is a determining factor in the value received for the 

animal, as it influences which markets can be targeted. 

The demand for high quality, tender, flavoursome beef is increasing. The quality of beef 

generally refers to the attractiveness, tastiness, and quality of the product to the consumer. 

There are multiple aspects that influence the quality of meat including intra-muscular fat, taste 

or flavour, texture, juiciness and tenderness 22. Higher IMF in beef is proven to increase the 

palatability of the meat to consumers. Smith 23 illustrated that IMF and oleic acid content had 

a positive correlation with palatability. Oleic acid content (on a g/g of meat basis) is also 

important as it can reduce the risk of cardiovascular disease in humans due to it being a 

monounsaturated fatty acid (MUFA). The deposition of MUFA occurs in the eye muscle which 

results in a more fluid mouth feel that is perceived as desirable 24. 

1.2.3 Wagyu Cattle  

Japanese cattle in Australia are known as either Black or Red Wagyu. This breed is native to 

Japan and has very high-quality meat characteristics. Wagyu animals can survive in tropical 

areas; however, they need to be managed for parasitic infestations such as ticks and their 

performance is lower than in temperature regions 10. There has been exponential growth in the 

Wagyu breed in recent years. Since 2015 the sire and dam registrations have increased from 

4,704 sires and 47,264 dams through to 12,223 sires and 104,222 sires registered indicating 

there are huge increases in the registrations of Wagyu cattle in 5 years 25. The increased market 

growth can be attributed to several factors such as increased demand for Australian Wagyu and 

increased store market value for F1 animals. This has enticed a large portion of beef producers 

to include Wagyu genetics in their beef herd as part of a crossbreeding strategy 26.   

The Wagyu cattle of today were developed in Japan by crossing the native Japanese cattle with 

European cattle such as Brown Swiss, Devon, Ayrshire, Simmental, Shorthorn and Korean 

cattle in the 1860’s through until 1910. The breed was then closed off to genetic infusion from 

outside sources. With all the registered animals only crossed with other registered animals, 

generating the lines of Wagyu present today 27. The first Wagyu animal imported into Australia 

in 1990 was a female cow. Further embryos and semen become available later. There was then 
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closure of the importation due to the Japanese government placing a total restriction on genetic 

exports out of Japan. However, there were animals from the Westholme herd in the US and 

Canada with genetic material being imported into Australia. In 2005 and 2006 all breeding 

stock was slaughtered for meat and no further breeding of the Westholme animals was 

continued in the US 28.  

There are three main strains of Wagyu breed in Australia, which include Tajima, Fujiyoshi, 

and Tottori. These are all from different regions within Japan and have distinguishing traits 

based on their geographical differences. The Tajima cattle originated from the Hyogo 

prefecture and were used to pull ploughs and carts through rice paddies. This resulted in a 

smaller framed animal with lower growth rates but excellent meat quality and larger eye muscle 

area. The Fujiyoshi strain originated from the Okayama prefecture with medium size frame 

and good meat quality. The third strain Tottori were developed for pulling grain carts which 

resulted in larger framed cattle with straight backlines and good growth rates however their 

meat quality is more variable compared to that of the Tajima or Fujiyoshi. A combination of 

all three lines is generally used in Australian fullblood Wagyu production to enable a high 

marbling content along with larger framed animals 29.  

The overall production of Wagyu cattle in Australia is mostly crossbred cattle consisting of 

fullblood Wagyu bulls crossed with predominantly Angus females to produce an F1 animal 10. 

These F1 animals can be re-joined to fullblood male bulls to increase the Wagyu content from 

50% to 75%, or further over generations. Although this is widely assumed that the increase in 

Wagyu content will increase the marbling, there is no scientific literature to confirm this 

resulting in a research gap. This eventually results in either a purebred animal or terminal F1s 

that are slaughtered for meat consumption. Different companies utilize different marketing 

strategies; however, it is becoming increasingly popular to have both a strict F1 product with a 

marble score less than five, and then a marble score 5+ product that targets higher value 

markets.  

The Wagyu industry in Australia experienced rapid growth in 2019-2021 due to the increased 

demand for the product and the premiums that are available for these animals. The current 

market is paying approximately $2.50-$3.00/kg live weight more for Wagyu crossbred cattle 

compared to other Bos indicus or Bos taurus cattle 30. There are different markets for Wagyu 

steers and heifers, which include a store market for animals between 200-250 kg being sold for 

backgrounding on pastures before entering the feedlot system. Another market is for animals 
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sold as feeder steers (approximately 350-400 kg) ready to enter the feedlot. Finally, another 

market involves finished animals being sold to processors or marketers off the hook after the 

feedlotting process (400 kg HSCW). Each of these markets has specific benefits and downfalls. 

An example of a drawback to selling young animals for a Wagyu breeder may include the 

difficulty regarding receiving feedback from carcase data after slaughter. Not receiving carcase 

feedback can render the process of making breeding decisions difficult for genetic 

improvement. 

The grading system of Wagyu cattle is different to other breeds of cattle as marble score has a 

heavy weighing on the grid by which prices are generated. The profit drivers specifically for 

Wagyu are HSCW and a dollar value that is placed on marble score of individual carcases. 

There are significant differences in carcase value between animals that marble well compared 

to those that do not (Figure 1.4). The value of the carcase is also dependent on the HSCW, as 

the whole value of the carcase is based on a grid which encompasses different prices for each 

marble score bracket ($/kg HSCW), multiplied by the HSCW of the animal. Therefore, it is 

important to understand the biology of fat deposition in Wagyu cattle, which allows to select 

superior animals with increased fat deposition while maintaining HSCW.  

 

Figure 1.4: Value of a carcase in relation to marble score (Connolly, 2020 unpublished data). 
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1.3 Metabolomics  

Genetics and genomics have been the preferred technologies to select, breed and manage 

animals for desirable traits that influence productivity and meat quality 31,32. Gene discovery 

and genetic associations require the measurements of a phenotype to link with, and estimate 

heritability or genes associated with such traits. The phenotypic traits such as marbling, HSCW, 

are then measured once the animal is slaughtered which is difficult to measure early in the 

animal’s life. Metabolomics offers another phenotypic trait which can be integrated with other 

‘omics’ technologies to improve the selection process above traditional phenotypic traits and 

has the potential to improve animal breeding, selection and management. This section looks at 

metabolomic techniques, sample preparation, methods of finding metabolites and analysis of 

the spectrum. Various technologies are utilised to determine or examine the metabolites in 

samples. The different methods, sampling techniques, technology platforms and applications 

are discussed in this section.   

1.3.1 Overview 

Metabolomics is an emerging field that provides a view of an individual’s phenotype. 

Metabolites are the building blocks for many biological components in the body such as 

regulation and signalling of genes, proteins, and enzymes, and key components of the primary 

and rapid response to the environmental influences or changes. Despite this, not every 

individual metabolite is followed by changes at the transcriptional level 33. Minor invasive 

procedures such as the extraction of blood, saliva, milk, or urine make the use of metabolomics 

accessible to a wide range of disciplines. Homeostasis of the body is generally interrupted with 

pathological diseases, environmental stress or metabolic disorders, thus making metabolomics 

an efficient process for determination or diagnosis of disease 34.   

The metabolome can be studied individually or in conjunction with other functional measures 

such as genomics, proteomics, lipidomics, transcriptomics or phenomics 4,8,35. Metabolites are 

generally characterized as chemical structures with low molecular weight, different in 

comparison to proteins and nucleic acids that are studied in DNA analysis. The function of 

metabolites is also different to that of proteins, peptides, transcripts mRNA and genes. 

Metabolomics encompasses multiple fields with multiple applications.  
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1.3.2 Metabolomics Technologies  

Several technologies can be used to characterize the metabolome. These include proton nuclear 

magnetic resonance (1H-NMR), mass spectrometry (MS), gas chromatography-mass 

spectrometry (GC-MS), total ion chromatogram and ultra-pressure liquid chromatography 

mass spectrometry (UPLC-MS) 8. Each technology has its own set of capabilities and 

limitations such as detection limits, sensitivity, costs, and the speed of sample processing. 

Figure 1.5 illustrates the different spectrums that are generated using different technologies 

such as 1H-NMR, LC-MS, MS, and the total ion chromatogram. 

 

Figure 1.5: Examples of spectra obtained with 1Dimensional 1H-NMR (panel A and B), LC-

MS with the colour coded intensity referred by the m/z and retention time axes (C), and the 

sum of the LC-MS spectrum across the m/z axis (D) and Total Ion Chromatogram which is the 

sum of the LC (E). The coloured regions in (E) correspond to the sum of the LC-MS spectrum 

limited to the m/z ranges depicted with the same colour in (D) (Sourced from Alonso, et al. 36). 

1.3.2.1 Nuclear Magnetic Resonance 

Nuclear magnetic resonance uses an instrument that can examine the physical phenomenon in 

which electromagnetic radiation is adsorbed and re-emitted from atomic nuclei that are aligned 

with a strong magnetic field. It allows for the quantification of magnetic properties of the 
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atomic nucleus 36. The 1H-NMR is the main technology that is utilised for the examination of 

the metabolome. The 1H in the NMR refers to the hydrogen-1 nuclei of the substance, which 

allows the structure of the molecules to be identified within a sample. The NMR instrument 

can examine and characterize structures of molecules, screen the composition of liquids, and 

quantify known and unknown components of a sample.  1H-NMR provides the benefit of ease 

of quantification, simple sample preparation, high number of molecule measurements per 

experiment, and relatively simple assignments of features 37. The NMR can determine the 

purity of a sample and classify mixtures into known compounds. For unknown compounds, the 

1H-NMR spectrum can be matched against spectral libraries to determine the structure directly 

38. NMR is a non-destructive method, which allows the sample to be examined multiple times. 

1.3.2.2 Mass Spectrometry  

Mass spectrometry is a method that attains spectral data examining mass to charge ratio (m/z) 

and relative intensity of compound. There are two main techniques, which are gas 

chromatography (GCMS) and liquid chromatography (LCMS). The spectrometer first ionizes 

the sample, and the ionized compounds generate different peak patterns. The variants are 

generally identified by different ionization and mass selection methods 39. The techniques are 

coupled with a separation technique of the molecules – either LCMS or GCMS. The two 

techniques use different columns, which allows for the chromatographic separation of different 

molecules, as the molecules interact differently with the different properties of the columns 36. 

The LC method separates molecules using a liquid mobile phase to pass the sample through 

the column whereas the GC method involves vaporizing the molecules without decomposition 

and is commonly used to test the purity of a substance. 

The adoption of mass spectrometry (MS) in metabolomics is an ever-increasing approach and 

provides a higher sensitivity and selectivity than 1H-NMR. The electrospray ionization (ESI) 

MS approach is able to provide chemical information such as the elemental formula and 

structural elucidation through the identification of parent and fragment ions 40. Gu, et al. 41 

illustrate a global metabolite profiling method using LC coupled with a triple quadrupole MS, 

with the key to this method being the global search of the precursor and product ion scan. In 

MS, the mass to charge ratio (m/z) is examined, with most metabolites having only one charge 

due to their low molecular weights. This is in contrast to proteins which contain higher 

molecular weights and charges 42.  
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1.3.3 Metabolomics Sample Preparation  

The sample preparation for metabolomics is dependent on the instrument that is being used and 

the type of sample that is being examined, and the type of metabolic screening that is being 

performed. Most samples prepared for 1H-NMR are in a solution state however it is possible 

to examine intact tissues with High Resolution - Magnetic Angle Spinning NMR. The sample 

preparation for plasma on the 1H-NMR instrument is straightforward and includes the use of a 

1:1 volume ratio of buffer and sample 38. However, a recent NMR method performs sample 

pre-processing to filter or eliminate large molecules (3.0 kDa cut-off) that can overlap with the 

peaks of smaller metabolites, and it also suppresses the water peak. This results in ‘cleaner’ 

spectra where small metabolites can be better differentiated with a flat baseline and high peak-

to-noise ratio to aid easy identification of metabolites 43. 

The preparation of a sample for the mass spectrometer is a diverse process dependent on the 

sample type and the method in which the sample is being infused and profiled. Gika, et al. 44 

indicated the main method to profile metabolites is using LC-MS based on sheer publication 

and citation statistics. The addition of an organic solvent such as methanol is required to 

remove proteins from the sample. This can be a difficult step due to human error and 

evaporation 42. 

1.3.4 Methods of Finding Metabolites 

Metabolites can be detected within a sample in two main methods; these include non-targeted 

profiling and targeted profiling methods 45. These are described in this section. 

1.3.4.1 Non-Targeted Profiling 

Non- targeted profiling is a method where preselected metabolites are directly screened for as 

part of a broad set of compounds that can be quantified accurately. This method includes 

multiple metabolites being detected within an individual sample; some molecules can be 

uncharacterized (or unassigned) prior to their discovery due to being rarely found in samples. 

These groupings of metabolites may only be specifically linked to that sample, appear in 

minute quantities or were not previously characterized 46. This method is characterized by the 

large datasets and complexity of the data obtained from 1H-NMR instruments, which in turn 

requires large and technical bioinformatics tools for data processing.   

1.3.4.2 Targeted Profiling  

Targeted profiling identifies specific metabolites in a sample. This approach has been adopted 

largely in the field of medical diagnostics and searches for specific metabolites of known 
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chemical structure. The use of targeted metabolites as biomarkers has become more proficient 

with the diagnosis, prognosis and treatment of diseases becoming the focus 47. For example, 

Dutta, et al. 48 have identified and characterized a set of biomarkers which allows for the earlier 

detection of endometriosis without the need of an invasive laparoscopy procedure to diagnose 

the patient. 

1.3.5 Analysis of the 1H-NMR spectrum 

There are many different types of 1H-NMR experiments used for screening biofluids. One of 

the most common sequences uses nuclear overhauser effect spectroscopy (NOESY). The 

NOESY can be described as the change in overall intensity of resonance that occurs when 

another resonance is saturated 49. Once the spectrum is generated from the NMR instrument 

and processed, there are multiple free access programs available to determine the number of 

metabolites and the intensities at which they occur.  

One program that enables the quantification of metabolites is Chenomx™, which enables 

baseline correction and removal of distortions that are larger than the background noise, as well 

as identifying the metabolites from a spectral library. The program allows for a targeted 

profiling approach based on the metabolites within the Chenomx® software 50. After the 

metabolites are identified, a matrix can be formed, and statistical analysis conducted to 

examine the relationship between the specific trait and metabolites in the sample.  

1.4 Metabolomics in Cattle 

Goldansaz, et al. 4 suggested seven main classifications for the application of livestock 

metabolomics including animal health, nutrition, production, reproduction, physiology, and 

products. There has been a huge increase in the number of publications since 1999 with large 

focus on animal breeding. The ability to undertake systems biology approach including 

genomics, transcriptomics and proteomics coupled with metabolomics could allow the 

biochemical pathways to be further understood 51. Metabolomics, can also be used for dynamic 

measurement of metabolic responses, identification of biomarkers relative to production traits 

or disease, and understanding potential genetic architecture 52. This section describes some 

examples of the application of metabolomics in animal production. 

1.4.1 Metabolomics for productivity 

Many economically important production traits are of interest in animal production including 

growth rate, milk production, feed efficiency, nutrition, and environmental footprint, amongst 

others. One that has received significant attention in cattle is feed efficiency because of the 
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difficulty, labour, and cost of measuring this trait. The application of metabolomics are varied 

and include identifying biomarkers, metabolic pathways or networks 53-57. D’Occhio, et al. 

58have examined the relationship between metabolomics and reproductive health. These 

authors concluded that the relationship between the metabolome and reproductive function and 

improvement of the technology would only increase our understanding of biological and 

metabolic health. 

Another application of metabolomics in the dairy industry encompasses metabolites being 

examined for use in prediction of milk production and quality. A study examined the urine, 

rumen fluid, serum, and milk of two groups of cattle fed two different diets (alfalfa and corn 

stover) to determine the influence of feed protein on the production and quality of milk. There 

were biomarkers associated with milk production and quality of the milk. The metabolites 

involved were glycine, serine, threonine, tyrosine, and phenylalanine (all commonly quantified 

and identified in an NMR screen). Animals fed a diet of alfalfa hay had increased 

concentrations of amino acids, peptides, analogues, and carbohydrates in the rumen samples. 

This suggested that more nutrients could be absorbed when animals are fed alfalfa compared 

to lower quality stover. The urine profile indicated there were 31 significantly different 

metabolites including amino acids, carbohydrates, and lipids. Overall, there were higher 

concentrations of metabolites in the urine of animals fed the CS diet suggesting there were 

more metabolic waste or inefficiently used nutrients, or that the urine was more concentrated. 

All results were in agreement with the phenotypic data such as lower milk production and feed 

efficiency in the animals fed a poorer diet 59.  

Another application of metabolomics in the beef industry was a study undertaken by Osorio, 

et al. 60. The objective was to identify the type of feed the animals had been fed using samples 

of muscle and urine to search molecular biomarkers using NMR. There were four groups of 25 

heifers each fed different diets at outdoor pasture (A), silage indoors (B), silage outdoors with 

outdoor pasture and concentrate (C), and barley-based concentrate indoors (D). There were 

significant differences in the urine and muscle samples of the animals illustrating that diet 

influences the biochemical makeup of the beef and this can be comprehensively measured 

using metabolomics. The main metabolites in urine that had significant differences between 

the control and the barley diets were creatinine, hippurate and glucose. However, the 

metabolites that differed in the muscle between animals fed different diets included carnosine, 

methyl histidine, malonate, and glutamine. Therefore, it is important to highlight that sample 
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used for metabolomics can have a large influence in the processes being measured, and this 

should be cautiously considered. 

1.4.2 Metabolomics for Genetic Improvement 

The application of metabolomics in conjunction with genomics is also an emerging application 

in livestock production. Metabolites can be seen as the ‘mid-point’ phenotype resulting from 

the genetic makeup of an animal and the environmental influences 8. Widmann, et al. 61 

examined metabolites and single nucleotide polymorphism (SNP) data together to develop a 

systems biology approach of the onset of puberty in young heifers. The metabolites were 

quantified in this study using the electrospray ionization MS/MS approach and Biocrates™ 

targeted metabolomic technology. The results indicated GnRH signalling is a relevant genetic 

modulator and that betacellulin and Diacylglycerol kinase eta are two highly connected hubs 

within the gene network. The use of metabolites together with genome wide association studies 

(GWAS) enabled information such as prediction of traits and regions of the genome associated 

with specific genes to be determined 8. GWAS is the process of examining a set of genome 

wide genetic variants such as SNPs to determine if there are any specific variants that influence 

a specific trait of interest. There seems to be a huge potential for metabolomics to improve 

genetic progress and prediction of important carcase traits. However, the heritability of the 

metabolome still uncertain due to limited data available and the difficulty to assemble different 

datasets that use different techniques, instruments, and analytical processes.  

A recent study with crossbred beef cattle demonstrated that 11 out of 33 metabolites had a 

heritability between 0.09 and 0.36 but no heritability was found for the remaining 22 

metabolites 62. Thus, approximately one third of the concentration of metabolites were due to 

genetic variants and two-third influenced by the environment. Interestingly, these authors also 

found candidate genes and networks with GWAS that were associated with the concentration 

of betaine, alanine, and lactic acid. However, the potential of metabolomics to aid in genetic 

selection and the heritability of the metabolome in cattle are highly unknown and more research 

in this area is required. 

Gemmer, et al. 63 examined if metabolomics could potentially replace the use of genomics in 

wheat populations to predict the multi-year agronomic traits. The estimated effects of the 

genomic prediction and metabolomic prediction were highly concordant however, the results 

indicated that metabolomics could not be used alone in barley, but the authors suggested it 



36 

 

would be able to assist in unravelling physiological pathways associated with agronomically 

important traits.   

1.5 Metabolomics of Food Products 

The use of NMR as a technology is not only limited to examining metabolites. The technology 

is similarly used extensively in food characterization as reviewed by Marcone, et al. 64. There 

have been multiple studies showing the ability of 1H-NMR to ensure the traceability and 

authenticity of food, such as determining origin, composition or molecular structures of the 

food 37. 1H-NMR has also been used in food traceability applications to determine the origin 

of multiple foods and drinks such as meat, honey, salmon, beer, wine, fruit juice and cheese 64. 

Another application of 1H-NMR in the food industry is to examine the water, lipid or protein 

content of the food sample 65.  

The geographical origin of beef is important to consumers due to the presence of “mad cow” 

disease, and the fact that beef quality can be influenced by the country or even region of origin. 

Jung, et al. 66 examined beef from four countries and reported that the chemical composition 

(i.e. amino acids and organic acids) of the beef differed amongst countries (Figure 1.6).  

 

Figure 1.6: PCA(A) and OPLS(B) 3D score plots derived from the 1H-NMR spectra of the 

beef sirloin extracts obtained from Australia, Korea, New Zealand and United States (Sourced 

from (Jung, et al. 66)) 

 

The application of metabolomics to food has also been explored by Tomita, et al. 67 where 

apple juice was examined to determine the difference between different apple cultivars grown 

in different geographical locations such as Japan and New Zealand. The results indicated this 
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was feasible and there were significant differences between sugar signals such as sucrose, 

glucose, and fructose. The minor metabolites such as aspartic acid, 2-methylmalate and one 

unidentified compound also aided in the process of determining the geographical regions of 

the apple juice. The application of metabolomics in food science has enabled the quality 

assurance process to become easier due to the ability of metabolomics to assess the quality and 

safety of the foods based on the authenticity of the products 68.  

The ability to determine the quality of a food product has been made easier using 

metabolomics. Pinu 69 reported the ability of metabolomics to identify biomarkers that are 

involved in microbial contamination. The use of both NMR and mass spectrometry could lead 

to the rapid and early detection of bad pathogens and food spoilage microflora. Xu, et al. 70 

utilised volatile organic compounds based GC metabolite profiling to identify 16 spoilage 

biomarkers in pork. Li, et al. 71 also applied a similar method to detect post-harvest diseases in 

onions using gas sensors and GC-MS.  

1.6 Metabolomics in animal and human diseases 

The metabolome is currently being used to search for biomarkers in relation to many diseases 

of humans. Pathological diseases are shown to disrupt homeostasis of body functions affecting 

the metabolic profiles 34. The examination of the metabolic profile of humans is being utilised 

in medical research including but not limited to cancer, cardiovascular, endocrine, mental, 

infectious, neonatal, kidney and neurological diseases 72. Biomarkers have been discovered for 

the diagnosis of preeclampsia in pregnant woman, which is a condition that leads to a 

significant amount of maternal and foetal mortalities 73. There were 40 organic molecules 

significantly elevated and 5 that were reduced in women who later experienced preeclampsia 

compared to women who had a normal pregnancy. Bahado-Singh, et al. 74 also reported novel 

first-trimester biomarkers that were able to determine the chance of early onset of 

preeclampsia. Cardiovascular disease is one of the largest causes of death in developed 

countries, with risk factors such as high blood pressure, diabetes and smoking all contributing 

to the risk. Metabolomics is currently being used to understand the pathophysiological 

processes associated with the disease 75. A study was conducted examining the metabolomic 

profile of 1,627 patients with 1,027 yielding results of diagnosis of Coronary Heart Disease 

using four specific metabolites which were lysophosphatidylcholine 18:1, 

lysophosphatidylcholine 18:2, monoglyceride 18:2 and sphingomyelin 28:1. These metabolites 

provided sufficient evidence for clinical application 76.  
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The identification of biomarkers in a 1H-NMR spectrum after biofluids have been screened is 

becoming more of a common practice in metabolomics labs. Imhasly, et al. 77 illustrated the 

ability of plasma metabolites to be used as potential biomarkers of hepatic lipidosis in 

transitional dairy cattle. Hepatic lipidosis is a syndrome that occurs in the critical period 

between calving and early lactation resulting in decreased milk production, reduced health 

status, reduced fertility, and a shortened lifetime. The results indicated that there were 

metabolites identified as potential biomarkers, which can aid in the diagnosis of different stages 

of the disease and potentially aid in prevention 77. 

Similar to the application of metabolomics in humans, plasma serum of cattle has been 

examined to identify metabolites for disease diagnostics. De Buck, et al. 78 examined plasma 

serum from cattle to identify potential biomarkers for the early detection of the bacteria 

Mycobacterium avium subsp. Paratuberculosis (MAP) that is associated with Johne’s disease, 

a debilitating disease in cattle. The available method in which the disease is diagnosed is 

inefficient at detecting the disease in sub clinical stages. The study was conducted examining 

the samples using 1H-NMR spectrometry to examine the concentrations of different 

metabolites at different stages of infection.   

Blakebrough-Hall, et al. 79 used NMR to identify bovine respiratory disease (BRD) in feedlot 

cattle, there were 85% of animals correctly identified in the validation dataset as having BRD. 

The ability to identify animals that are pre-disposed to BRD prior to entering or at feedlot 

induction would enable the industry to be more efficient as the animals that are sick can be 

treated earlier prior to visual symptoms. Gómez, et al. 80 examined the ability to determine the 

identification of pregnancy specific biomarkers in blood plasma beef cattle after transfer of in 

vitro produced embryos. The study identified specific biomarkers that were able to indicate if 

the recipient would maintain a pregnancy and if there was a difference between the biomarkers 

required for fresh or vitrified embryos. The results indicated there were metabolite biomarkers 

that were associated with the ability to identify if the recipient would establish a pregnancy. 

Another study conducted in cattle included using metabolic profiling to identify biomarkers 

associated with Johne’s Disease administered at low or high doses 78. The results indicated that 

animals that received different doses of MAP showed limited differences of the metabolome 

compared to the animals that received a lesser does signifying the effects were dose dependent 

and specific 78.  
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1.7 Cattle Growth and Fat Deposition  

Fat deposition in beef cattle is a significant profit driver as the amount of adipose tissue in 

muscle (IMF, marbling) can have a large impact on the value of an animal. Other drivers of 

profit are feed efficiency (kg of beef per kg of feed), and the number of days cattle spend in a 

feedlot to reach market specifications (weight and marbling). Beef cattle firstly use energy to 

grow bone and maintain their body, then muscle growth and finally fat deposition occurs later 

in life when the animal matures physiologically 81. Bone growth plateaus when the skeletal 

frame is matured, and muscle growth continues until the animal reaches the mature weight. 

Figure 1.7 illustrates the increase of the rib eye area (REA) and rib fat depth with increasing 

days in a feedlot. Fat is deposited at a faster rate as muscle reaches a plateau 82.  

 

 

 

 

 

 

Figure 1.7: Muscle growth relative to fat deposition on the 12th rib in cattle (Sourced from 

(Maddock 82)). 

 

The first fat to be deposited is thought to be perinephric (internal) fat, then intermuscular, 

followed by subcutaneous and finally intramuscular 83. The deposition of subcutaneous and 

visceral fat on a carcase is costly to the producer as there are penalties associated with excess 

fat on a carcase, which can be up to 20 cents/kg if there is more than 23 mm in most breeds or 

40 mm in Wagyu cattle. Fat requires more kg of feed per unit of fat deposited which adds 

significantly to cost of production 84. This highlights the importance of determining which 

animals will deposit intramuscular fat without excess of internal, intermuscular, or 

subcutaneous deposits. In addition, accretion rate of different tissues change as the animal 

matures and it is expected that the relative importance of metabolic processes would also 

change with degree of maturity. Therefore, the point in time when measurements are taken are 

of critical importance to achieve different objectives such as identification of high and low 
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performing animals. Nevertheless, a gap in knowledge seems to exist about the metabolic 

changes that accompany growth and development of cattle and further research in this space is 

encouraged. 

An animal that is in a feedlot for 450 days can incur costs of up to $1,500 based on 

contemporary costs of $3.30/head/day for the whole duration in a feedlot (influenced by grain 

prices). An animal with marble score 3 would be valued at approximately $4.60/kg HSCW or 

$1,946 (HSCW of 423 kg). This animal would have consumed $1,500 of feed and had a cost 

of $2300 on feedlot entry. This represents a very small profit. By comparison, an animal with 

marble score 9 would be valued at $15.00/kg HSCW or $6,423 (HSCW of 423 kg). The return 

would be $6,423, a significant profit. Identifying animals that marble at an early stage is 

therefore critical both meat quality and profit for producers. Genetic selection of sires that 

produce progeny with high value carcases is slow as it can take up to 5 years before carcase 

feedback is obtained for progeny. Several methods are therefore being explored to accelerate 

genetic progress and selection including genetic markers, GWAS, metabolomics, lipidomics 

and phenomics. 

1.7.1 Lipid metabolism in cattle 

Lipid metabolism in cattle is influenced by many factors. For example, the fat composition of 

muscle is impacted by age, nutrition, breed, genetics, environmental influence and sex 85. In 

ruminants, most of dietary carbohydrates are digested in the rumen by micro-organisms and 

only 5-20% of dietary carbohydrates consumed are digested in the small intestine. The dietary 

cellulose, hemicellulose, proteins, and pectins are fermented to volatile fatty acids (VFA) and 

absorbed from the rumen and other parts of the digestive tract. It has been revealed that adipose 

tissue is the primary site for fatty acid synthesis in non-lactating ruminants as opposed to the 

liver in humans 86. Bovine subcutaneous tissue is mainly synthesized from acetate, which 

allows glucose to be used in cells such as red blood cells that have an absolute requirement for 

glucose. Intra-muscular adipose tissue is interesting as it has a high dependency for glucose as 

the carbon source for fat synthesis, especially in younger cattle 86.  

Gluconeogenesis is a process that is partly undertaken in the rumen by the cells that line the 

inside feed is degraded into substrates which are then processed in the liver into the products 

of propionate, valerate, amino acids, lactate, and glycerol. In ruminants, the conversion of 

propionate to glucose occurs in the liver and glucose is transferred to blood in both fasted and 

fed states, with faster uptake in animals that have a positive energy balance 86. Steers fed a 
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corn-based diet had increased propionate production, which enhanced glucose uptake in IMF 

deposition compared with a hay-based diet (Rhoades, et al. 87. De-esterification and bio 

hydrogenation of dietary fats occurs in the rumen, mainly due to microbial processes. This 

process yields short chain-fatty acids, saturated fatty acids, trans fatty acids and conjugated 

linoleic acid isomers. 

Smith and Crouse 88 showed that the deposition of adipose tissue as marbling used glucose as 

a carbon source as opposed to subcutaneous fat where acetate was the main carbon source. 

There is evidence to suggest that providing access to glucose at an earlier age promotes the 

deposition of IMF later in life more so than if the glucose is fed to the animals later in life, 

although 98% of glucose fed will be degraded in the rumen to propionate 17. The deposition of 

IMF is not fully understood, and further studies are needed on the relationship of the plasma 

lipidome to phenotypic information (such as all carcase attributes i.e. beef marbling score 

(BMS), HSCW, P8, rump fat). These studies could indicate if there are specific lipids that 

influence the regulation and deposition of IMF as well as metabolites or small molecules. 

1.7.2 Livestock Selection Intensity and Methods 

Livestock selection intensity is the amount of pressure placed on selecting the top percentage 

of animals for a specific trait, e.g. animals with highest 1% marbling of a herd 89. Increasing 

the selection intensity on desirable traits such as marbling and HSCW can be difficult as the 

generation interval (the age at which the parents can produce the next generation) can require 

up to two years before the first progeny are born. This has resulted in the selection of animals 

based on data from closely related animals such as siblings or half siblings to determine the 

genetic merit of an individual. Whilst this approach has historically been beneficial, there are 

significant limitations that include small numbers of closely related animals, which results in 

low accuracy for an individual population 90. The ability to assess breeding values across 

multiple breeds or herds in beef cattle is limited due to the genetic diversity - there are too 

many genetic lines to be able to reference across multiple herds. Predictive markers or 

biomarkers of a trait would be extremely beneficial as it would allow the timely and costly 

process of progeny testing individual animals to increase genetic progress at a quicker rate 91. 

Both genomics and metabolomics could be these tools to allow for prediction of genetic 

potential of animals at an earlier age and increase genetic progress at a faster rate. This is 

especially important for traits that are hard to measure such as marbling, which expresses only 

when the animal is slaughtered. Traditional selection methods involved the selection of 

superior animals with desired traits such as marbling, fertility, weight, and survivability 92. 
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Using a metabolomic biomarker as a performance indicator rather than or in addition to genetic 

linkage may allow for incorporation of environmental influences, and a better understanding 

of the overall biological system of the animal 93.  

Some of the original selection traits included docility (for domestication), coat colour, and 

animal shape or structure 94. The selection for some desired traits has become more 

comprehensive because of the difficulty to measure and being polygenic (influenced by 

multiple genes). The current method most commonly used by the Australian beef industry to 

improve the quality of a carcase are Estimated Breeding Values EBV 95. This process enables 

the producer to select bulls or females based on the genetic potential of the animal for multiple 

traits including HSCW, EMA, marbling, rib fat, and P8 fat 95. The data used to calculate EBV’s 

generally comes from live animal ultrasound scanning or abattoir carcase data plus the pedigree 

information collected by studs or producers. The ability to select animals on shear eye appeal 

is very difficult and the ability to predict genetic merit of animals can also be increased by 

using genomic data such as SNPs included in the genetic analysis. Another method used to 

identify causal mutations influencing meat quality is using candidate genes and marker assisted 

selection. In contrast to GWAS, the candidate gene process focuses on the association of a pre-

defined set of genes. Ron and Weller 96 proposed a four-step method to identify candidate 

genes; however, this has been largely unsuccessful. This approach has been applied to studies 

investigating meat quality; however, due to there being many genes affecting meat quality the 

proportion explained by one gene is minimal. There is also an argument that genomic variance 

can influence the expression of a gene and that epigenetics can also silence or activate a gene 

along the genome 97.   

Consumer demand is for consistent high-quality beef. Another unsolved issue is that tenderness 

can only be estimated after slaughter. There are some factors known to influence tenderness 

such as the CAPN1 and CAST genes, these genes influence the sheer force of beef 98. It is 

widely known that the influence of specific gene markers, gene expression or protein 

concentrations can be specific to the breed, muscle, or to a contemporary group. This makes it 

difficult to develop a worldwide strategy for selection 99. Selection of traits based on carcase 

data should be important for any enterprise involved in the supply chain 100. This enables 

selection criteria to be placed on desirable traits such as marbling and carcase weight. Since 

both marbling and HSCW are moderately heritable (Table 2), there are bulls that enable higher 

marbling and carcase weight to be achieved; however, it can be difficult to identify these bulls. 

Selecting for these traits based on progeny data feedback would allow for genetic progress.  
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1.8 Residual Feed Intake (RFI) 

With increasing world population and finite resources available, it is critical that food 

production becomes more efficient. The ability to select beef cattle based on the efficiency in 

which an animal converts expensive feed inputs into kilos of beef would enable the whole 

system to become more efficient 101. In addition, the ability to reduce the environmental impact 

of producing beef would be beneficial 102. The most widely used trait to measure feed efficiency 

is the feed conversion ratio (FCR) which is the ratio of dry matter intake (DMI) to average 

daily gain (ADG) of the animal 102. However, selection of animals for FCR results in a larger 

mature cow body weight (BW) with increased feed costs of the herd 103. FCR is moderately 

heritable but is impractical to calculate, as it requires the measurement of feed intake for 

individual animals. An alternative measure of feed efficiency is residual feed intake (RFI) or 

net feed intake. The RFI is a measure of feed efficiency of animals which takes into 

consideration the actual intake of an animal minus the predicted intake based on the size and 

maintenance requirements of the animal 101. Taking into consideration the phenotypic variation 

in body size and growth into the calculation enables RFI to improve the feed efficiency without 

increasing the mature size of the animals or reducing the productivity 104-106. However, 

measuring feed efficiency is expensive as each animal needs to be placed in a pen with 

electronic feeders on scales and electronic identification107. Therefore, RFI is also a difficult to 

measure trait as it is marbling, and potential biomarkers or genetic markers would have great 

value to assist the industry with the selection process for more efficient animals. Nevertheless, 

it has been shown that increasing efficiency (lower RFI) increases the leanness of the meat 

produced because there is an antagonist relationship between the fat in the carcase and the 

lower RFI animals 108,109. This could be very important in Wagyu cattle where the key attribute 

is to produce animals with high fat content to achieve the marbling desired. However, little 

research exists on the efficiency of feed conversion in Wagyu cattle, and on the underlying 

metabolomic mechanisms that allow then achieving high marbling scores. Therefore, research 

is needed measuring feed efficiency, carcase traits and metabolomics in Wagyu cattle.  

The ability to select animals based on feed efficiency is multifactorial and is influenced by 

genetic variation, behaviours, physiology, and environmental factors 110. Numerous biological 

factors can lead to sources of variation in phenotypic RFI. The appetite, feeding behaviour and 

activity of the animals can have a large impact on the measurements recorded 108. Voluntary 

feed intake is a complex process of interactions from the neuro-endocrine control mechanisms 

and the physiological state of the animals 111. 112 concluded that there was a requirement for 
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further investigation to understand the endocrine function and gene and protein expression 

within the hypothalamus to further understand the variation between animals in feed efficiency. 

Kenny, et al. 113 have undertaken a review into the effect of daily time spent feeding, the results 

suggested that on average animals with high RFI spent 10.3 minutes longer eating out of an 

average of 93 min/d than their low RFI counterparts. This indicates the feeding behaviours of 

the animals have a large impact on the feed intake and RFI which needs to be considered if 

trying to select animals based on the RFI measurement.  

1.8.1 RFI and Genetic Selection 

The importance of improving the genetic selection for a specific trait is relative to a clear 

definition of a breeding objective. In Wagyu cattle, marbling or IMF is the most important 

breeding objective 10. The ability to select for animals that eat less without compromising other 

performance traits is critical. However, beef cattle breeding for RFI has issues due to the 

genetic diversity of breeds of cattle. The heritability of RFI in Holstein Friesians has been 

reported from 0.4 to 0.27 114,115. This variation is across multiple populations across the world, 

which indicates there is a requirement for recalculation of the heritability estimates before re-

estimating the genetic parameters. Canovas, et al. 116 have shown that there have been 

numerous candidate regions in the genome associated with commercially relevant traits, which 

came about with the development of ‘omic’ technologies such as metabolomics, proteomics, 

transcriptomics, genomics, and metagenomics.  

Weber, et al. 117 examined the underlying molecular networks and physiological traits 

associated with feed efficiency in beef cattle. The study examined eight steer progenies of two 

influential Angus bulls with opposing genomic predictions for RFI. The study examined the 

steers from 8 months of age and the animals were phenotyped for growth and feed intake until 

slaughter at 14-16 months of age. The gene expression networks were examined, and the results 

showed that there were differently expressed genes and gene co-expression networks that 

linked tissue function with transcription factors and genes harbouring GWAS SNP. The 

findings from this study indicate there are significant genes and gene interaction associated 

with the regulatory networks and defining pathways associated with RFI.  

1.8.2 RFI and Metabolomics  

The relationship between metabolomics and RFI was examined in several studies 54-57. Karisa, 

et al. 55 was one of the first studies to publish the relationship between plasma metabolites and 

performance traits in beef cattle. The study investigated the relationship between metabolites 
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and RFI at three time points throughout the feedlotting process. There were only 2 metabolites 

(creatine and glycine) significantly correlated with RFI at time point 1, 10 metabolites 

(hippurate, glutamate, betaine, citrate, lysine, phenylalanine, creatine, acetate, carnitine, and 

threonine) at time point 2, and 3 metabolites (hydroxyisobutyrate, tyrosine and formate) at time 

point 3. This study was very important finding because it demonstrated the ability to potentially 

predict feed efficiency using biomarkers in the plasma of beef cattle. However, the reasons for 

changes in the importance of metabolites over time is unclear because the study was relatively 

short period and further research is required to understand and confirm the results. In Wagyu 

cattle with long feeding period, the time of sampling could be critical to achieve good 

predictions. However, no research exists to understand the effect of sampling protocols on the 

relationships between the metabolome and important production traits such as marbling and 

RFI. 

Foroutan, et al. 118 developed a prediction model for feed efficiency using plasma metabolites 

in young Angus bulls. Two biomarkers formate and Leucine always had a higher relationship 

in the high RFI bulls than in the low RFI bulls. The latter authors used a logistic regression 

model to predict the RFI status of the animal based upon the two biomarkers. The NMR panel 

was the most accurate making them good candidates to be used as biomarkers 118. 

1.9 Machine Learning 

Livestock production generates a large amount of data including weight, feed intake, 

treatments, genetics, and metabolomics. The ability to record such data is becoming easier with 

the development of technology and capacity to measure and record 119. Machine learning uses 

multiple approaches to analyse data and produce predictions for specific traits or to help 

understand biological processes 120. Machine learning uses a versatile approach to data analysis 

as there are fewer assumptions and the distribution of the data is not required to be normal. 

Some of the main methods in machine learning are neural networks, Bayesian models, random 

forests, deep learning, dimensionality reduction, decision trees, ensemble learning, instance 

based models and support vector machines 120.  

Neethirajan 121 reviewed the role of sensors, big data, and machine learning in animal 

production. The review highlighted the fact that there are fewer farms available, and more 

animals required to feed the ever-growing population, with the global demand for various meat 

products predicted to increase by over 70% in the next three decades. With this in mind, it is 

critical that the production of animals becomes more efficient to ensure there is less wastage 



46 

 

of vital resources. The optimization of feed efficiency and energy intake is one of the 

applications to predict requirements of the animals and also select for more efficient converters 

of energy to protein 122. Understanding of complex systems is required to use the advanced 

technologies to examine biological systems and identify complex patterns. The developing 

technologies require analysis of many types of data from images, text, audio and videos, and 

complex algorithms then examine this information and identify and predict problems such as 

disease outbreaks 123.   

1.9.1 Machine Learning Methodologies 

The basic statistical framework in machine learning in most practical applications involves a 

pool of candidate probability models that can predict traits or variables based on unobserved 

data or a process that is better known as ‘training’ the dataset. This technique is referred to as 

supervised learning, where the predicted target or phenotype is known whereas if the phenotype 

is discrete, such as disease status, then is called a classification model. If there is no phenotype 

available and partially incomplete it is referred to as unsupervised learning 119. The ability to 

predict the outcome of a model is undertaken by splitting the dataset into training and validation 

populations, where the validation dataset is not included in the development of the model. The 

decision on which model to use is largely dependent on the data that is available, and the model 

selected needs to be determined to ensure the data is not over fitted and the results are not 

misrepresenting the actual results. The framework to explain how multiple databases feed back 

into the analysis process is shown in Figure 1.8. 

 

 

 

 

 

 

Figure 1.8: An overview of big data analysis when applied in animal science using the machine 

learning techniques (Sourced from (Morota, et al. 119).  
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Principal Component Analysis (PCA) is one of the statistical procedures able to reduce the 

dimensions inside the data set without removing the variation 124. This is the most common 

unsupervised statistical method commonly employed in metabolomics due to the increasing 

dimensions (features) measured in datasets. PCA is able to reduce the number of dimensions 

by stripping away unnecessary information or features, such as the differentiation between 

patients urine to determine which patient has been exposed to drugs, disease or other 

environmental factors 125. PCA is generally the starting point of the analysis due to its ability 

to illustrate both the highest variance and potential outliers within the data set. The 

disadvantages of PCA include the fact that the greatest directions of variance do not always 

maximise information within the data set, e.g. there could be an outlier driving the variance in 

the dataset 126. PCA is a method designed to examine what is driving the variance in the dataset.  

Following the PCA, the most common supervised statistical approach is orthogonal partial least 

squared-discriminant analysis (OPLS-DA). The OPLS-DA method tries to find a linear 

relationship between the X and Y vector matrices. The X (predictor) vector matrix is generally 

the spectrum data (metabolites) compared to the Y (response) vector matrix which is generally 

the clinical/physiological metadata i.e. marble score or sick/healthy patients 127. Caution needs 

to be taken when using the OPLS-DA method in regards to a small data set as it can lead to 

over fitting and class separation in the absence of any actual variation within the data set 50. 

Other statistical methods can be applied to a metabolomics dataset such as classification and 

regression trees (CART), clustering procedures and random forests. A classification tree aims 

to target specific variables and identify the specific “Class” to which any individual variable 

could be assigned. A regression tree examines a specific target variable that is continuous, and 

the tree is used to be able to predict its value. The basis of the algorithm is a structural sequence 

of questions that starts at the root node and partitions the dataset using one variable e.g. if the 

value of the variable is x it is assigned here otherwise it is portioned to the next root node where 

another question is further proposed to partition the dataset further 128.126 Random forest are 

also another method amongst many machine-learning methods that are available to use in 

predictive modelling. The Random forest method is a supervised learning algorithm that 

consists of a combination of trees to determine the most efficient predictor 129. 

1.9.2 Machine Learning in Livestock  

The use of machine learning has many applications in cattle with some more complex than 

others. Genomic prediction was one of the earliest adopters of the data mining techniques. 
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Long, et al. 130 used machine learning in genomic selection against early mortality in broiler 

chickens. The application of machine learning in genomic analysis has been undertaken 

multiple times since the continued development of the methods 131,132. Another application of 

machine learning in the genetics field is the imputation of genotypes to increase the coverage 

of the genome; the imputation accuracy is measured by the ratio of correct calls compared to 

the overall call rate. Ventura, et al. 133 investigated the ability to impute data without causing 

the future analysis to be biased, and the method was improved upon by using machine-learning 

methods that included other data such as the number of animals, the density of each panel and 

the breed and composition of the animals that were being genotyped. 

Machine learning has been used in dairy cattle, which could be due to the amount of data 

recorded and measured in dairy herds. Shahinfar, et al. 134 investigated the ability to predict the 

insemination outcomes of Holstein dairy cattle using machine-learning algorithms. The 

machine learning algorithms that were used included Naïve bayes, Bayesian networks, decision 

trees, bootstrap aggregation, and random forests. The study concluded that the random forest 

method was significantly better at classifying the pregnancy outcome with 72.3% and 73.6% 

accuracy for primiparous and multiparous cows, respectively. This is one application of 

machine learning that enables farming practices to become more efficient by identifying which 

animals will contribute to production goals. Hyde, et al. 135 examined the automated prediction 

of mastitis infection patterns in dairy herds using data from 290 farms across the UK between 

2009 and 2014. The key to the analysis was to identify the route of the pathogen if it was either 

contagious or environmental transmission into the herd. The model that was used was able to 

achieve an 86% positive predicted value and 99% accuracy for the negative predicted value. 

The early diagnosis of mastitis allows rapid intervention to reduce infection within the herd. 

An application of machine learning in animal welfare applications includes the behavioural 

classification using supervised ensemble classifiers by Dutta, et al. 136. The study aimed to use 

supervised machine learning techniques to classify cattle behaviour by fitting accelerometer 

and magnetometer collars to the animals measuring five major behaviour classes. Grazing, 

ruminating, resting, walking and other behaviours were the five classes used to examine the 

behaviour of the animals, and the supervised classification models included binary tree, linear 

discriminant analysis classifier, naïve Bayes classifier, k-nearest neighbour classifier, and 

adaptive neuro fuzzy inference system classifier. The application of this technology could be 

to provide early detection and assessment of the animals health problems such as lameness and 

potentially future applications of management tools like detection of oestrus 136. 



49 

 

Another application of machine learning was to predict marbling score and carcase traits in 

Korean Hanwoo beef cattle 137. The data included live weight, ultrasound, biophysical 

measurements, sires EBV’s, ADG and the top ranked SNPs from an earlier performed GWAS. 

Four machine-learning algorithms were evaluated including Model Trees, Random Forests, 

Multilayer Perception and Support Vector Machines. These models were evaluated at 

predicting the carcase attributes twice in the animal’s life (early and late). The results indicated 

that support vector machines with sequential minimal optimization and model trees performed 

the best within the study. The ability to select animals early in their life enables the whole 

production system to become more efficient, the key to having a more precise prediction model 

is ensuring the recording of the data is accurate 137.  

Improvements in the efficiency of production is critical in Wagyu given the long period that 

animals spend in a feedlot. The ability to identify and select individual Wagyu early in life for 

feed efficiency and carcase quality would significantly improve resource utilization and reduce 

costs. Machine learning will have an important role in analysing large data sets and 

contributing to animal selection. 

1.10 Summary 

This literature review has demonstrated the potential to use a combinatorial approach of 

metabolomics, routinely collected animal farm data, and machine learning on Wagyu beef 

cattle to identify and predict cattle with desirable production and carcase traits such as RFI, 

marbling, HSCW and EMA. In addition, metabolomics could help in elucidating the 

underlying biological mechanisms involved in the regulation of these traits in a unique breed 

of cattle such as Wagyu where energy and fat metabolism is very important for the 

sustainability of the business. For example, the metabolic processes and importance of different 

metabolites that define marbling and RFI as the animal matures are poorly understood. 

Therefore, information on the effect of DOF on animal metabolism and the ability of 

metabolomics to predict importance production traits are lacking in the literature. It is also 

important that these mechanisms are studied and understood before machine learning is 

implemented because these could guide sampling and analytical protocols, and the 

development of prediction models. The metabolome is a product of the interaction between 

genes, mRNA, proteins, microbiome, and the environment. The literature suggests many 

potential applications for the combination of each of these technologies to further understand 

the biological interactions in the bodies of beef cattle.  
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Overview 

This chapter was focused on examining the relationship between the blood metabolome and 

carcase traits at slaughter in Wagyu crossbred steers. This could enable the identification of 

steers that will produce carcases with high marbling earlier in the feedlotting process. 

Understanding the relationships between the fat and muscle metabolism could also unravel the 

biological mechanisms driving carcase value.  
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2.1 Abstract 

The aim of the present study was to determine the relationships in feedlot cattle between the 

blood metabolome and (1) carcase traits with a focus on intramuscular fat (marbling), and (2) 

the length of time cattle consumed a high-starch diet. Blood samples were obtained from 181 

Wagyu-crossbred steers between 300-400 days before slaughter when carcase data was 

collected. 1H-NMR spectroscopy identified 35 metabolites with 7 positively associated with 

marbling (3-hydroxybutyrate, propionate, acetate, creatine, histidine, valine, and isoleucine; P 

≤ 0.05). Subcutaneous rump fat thickness was positively associated with glucose, leucine, and 

lipids (P ≤ 0.05) and negatively associated with anserine and arabinose (P ≤ 0.05). Carcase 

weight and growth rate were negatively associated with 3-hydroxybutyrate (P < 0.05), and 

growth rate was negatively associated with creatine (P < 0.05) and positively associated with 

aspartate (P < 0.05). Glucose and arginine showed a significant interaction between marbling 

and number of days animals consumed a high-starch diet (P < 0.05). Sire was the single 

variable with the largest effect on the relative concentration of metabolites and carcase and 

production traits. Blood metabolomics helps understanding fat and muscle metabolism, and is 

associated with genotype, and carcase and production traits in cattle offering potential 

biomarkers to be able to select animals based on their blood metabolome.  

Keywords 

Metabolome, growth, fat deposition, carcase, Wagyu cattle 

2.2 Introduction 

Carcase quality and value in beef cattle are determined primarily by intramuscular fat (IMF; 

marbling), carcase weight, eye muscle area (EMA; Longissimus Thoracis et Lumborum, LTL), 

and subcutaneous fat thickness at the 12th rib or rump site 1. These are proxy indicators of 

carcase composition, meat yield, and quality, and are therefore widely used by livestock 

industries globally 1,2. In some markets, marbling is the dominant commercial trait because of 

the relationship between marbling and sensory and eating quality of beef 3. Wagyu cattle are 

renowned for high marbling and this trait is the major factor that determines carcase price 

together with carcase weight 4. Phenotypic and genetic selection for marbling is difficult as it 

can only be accurately measured after slaughter and it has a relatively moderate heritability of 

0.38 5. The ability to identify animals with superior carcase traits early in the production cycle 

would improve productivity and profitability and enable faster genetic progress. 

Synthesis of adipose and muscle tissue in cattle occurs from metabolic precursors such as 

glucose, propionate, acetate, amino acids and lipids, amongst many others 6. Different fat 
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deposits preferentially utilize certain metabolites as precursors such as IMF preference for 

propionate and glucose, and subcutaneous fat (SC) preference for acetate 7. Therefore, the 

concentrations of metabolites in the blood of cattle would be expected to be correlated with the 

mass of IMF and SC. The type of diet consumed has also been associated with the blood 

metabolome at the time of slaughter in cattle 8 because diet affects fat and muscle deposition 7. 

Beef cattle are often raised on pastures and then inducted into feedlots where high grain diets 

are fed to increase lipogenesis and growth rate 7. Therefore, the blood metabolome could also 

be affected by the length of time animals consume a high-grain diet (days on feed, DOF). 

Reports are lacking on the relationship between the blood metabolome and fat and muscle 

tissue mass in cattle, or the effect of the number of days animals consume a high grain diets on 

this relationship. 

The present study sought to determine the relationship between the blood metabolome and 

carcase traits in Wagyu-crossbred steers. 1H-NMR spectroscopy of plasma was used to 

measure the relative concentration of metabolites as this technique can measure a wide variety 

of metabolites, is fast and relatively simple 9. A significant relationship between carcase traits 

and the concentration of blood metabolites could potentially lead to the identification of 

biomarkers to predict those traits or assist with genetic improvement. The hypotheses of the 

present study were (1) that concentrations of blood metabolites were associated with marbling 

and other carcase traits in Wagyu-cross steers, and (2) that such association was not affected 

by the length of time animals were fed a high-energy, grain-based feedlot diet. The blood 

metabolome of steers was ascertained at 65, 119 and 163 DOF and steers were slaughtered 

after approximately 400 to 440 DOF.  

2.3 Material and methods 

2.3.1 Animals and experimental design 

Three mixed groups of F1 (n = 127), F2 (n = 22), and F3 (n = 32) Wagyu-crossbred steers 

(initial LW 330 ± 1 kg SEM) were inducted on three separate occasions into a commercial 

feedlot in southern Queensland, Australia. The genotypes of the females crossed with Wagyu 

bulls were Angus (n = 16), Brahman (n = 28), Brahman crossbred (n = 26), Jersey (n = 3) and 

Shorthorn (n = 108). The steers generated for the study were the progeny of 23 sires (Japanese 

Black Wagyu full blood bulls). Group 1 had 49 steers inducted at day 0 (start of the study); 

Group 2 had 63 steers inducted at day 44; Group 3 had 69 steers inducted at day 97. Animals 

were housed in one pen but had entered the feedlot as three groups on different dates with 

Groups 2 and 3 entering 44 and 97 days, respectively, after Group 1. Animals were fed to allow 
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for ad libitum consumption of diets that were changed during the period in the feedlot as shown 

in Table 2.1.  

 

Table 2.1: Diet formulation and chemical composition of the four rations fed at different stages 

in the feedlot to Wagyu crossbred steers. 

 Unit Diet 1 Diet 2 Diet 3 Diet 4 

Ingredient 1      

   Days fed Diet  0 to 6 7 to 11 12 to 323 324 to 450 

   Steam flaked barley % 19 25 35 42 

   Steam flaked wheat % 19 25 13 23 

   Grower Supplement % 5 5 0 2 

   Finisher Supplement % 0 0 5 4 

   Molasses % 14 10 5 4 

   Vegetable oil % 0 1 1 1 

   Brewers sweet grain % 0 0 19 10 

   Sunflower Meal % 9 6 2 0 

   Corn Silage % 12 13 15 10 

   Barley Straw % 12 11 6 5 

   Cereal Hay % 12 4 0 0 

Chemical composition      

Crude Protein % DM 13.58 13.56 13.93 13.51 

Neutral Detergent Fibre % DM 31.05 26.53 25.18 20.96 

Net Energy of Gain MCAL/kg 0.99 1.15 1.25 1.35 

Net Energy of Maintenance MCAL/kg 1.61 1.79 1.91 2.02 

Metabolisable Energy MJ/KG 10.46 11.33 11.85 12.42 

Ionophore PPM 21.13 22.26 22.08 22.45 

1 As fed basis 

Feeding changes, blood sampling and time of slaughter are shown in Figure 2.1. Each group 

of steers was fed diets 1 and 2 for the first 11 days in the feedlot in separate pens then were 

commingled with other steers in the study. Groups 2 and 3 spent less time on diet 3 compared 

to Group 1 as they were commingled on different days. Blood samples for metabolome analysis 
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were taken on the same day for all animals which meant that the number of days each group 

was on diet 3 was: Group 1 (152 days); Group 2 (108 days); Group 3 (54 days).  

 

Figure 2.1: Timeline of events over the 490 days the animals were in the feedlot illustrating 

the individual group diet changes, blood sampling and feedlot exit in relation to experimental 

day. 

 

 

On the day of blood sampling, animals were removed from their pen at 0600 h before feed 

distribution and samples were taken between 0700 and 1030 h. Blood was collected from the 

coccygeal vein using an 18G needle and evacuated lithium heparin tubes (Vacutainer BD, 

Becton Dickinson, Frankland Lakes, NJ). Samples were immediately placed on ice until 

centrifugation at 10,000 × g for 15 min. Plasma was stored at -800C until analysis. Days in the 

feedlot at slaughter were 414, 435 and 393 days for Groups 1, 2, and 3, respectively.  

The Aus-Meat carcase grading was performed by an accredited assessor  10 at a commercial 

abattoir 10. Information recorded included hot standard carcase weight (HSCW), a camera 

measure of marbling, eye muscle area (EMA), subcutaneous fat depth of the 12th rib, and 

subcutaneous rump fat thickness at the P8 site. The AUS-meat marbling grading scale ranges 

from 0 to 9+ with 0 being the lowest and 9+ the greatest marbling. The LTL muscle of each 

carcase was also examined for percentage marbling using high-quality digital hyperspectral 

images which is referred to as camera marbling (CM) (HK-333, Hayasaka Rikoh Co. Ltd., 

Sapporo, Japan) 11. Marbling score is a subjective and discrete measurement whereas CM is 

objective and continuous. 
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2.3.2 Sample Preparation for metabolome profiling  

Sample preparation for metabolic profiling used methods from a published protocol 12. Samples 

were thawed at room temperature and an aliquot (350 uL) was mixed with 350 μL of aqueous 

(80% H2O:20% D2O) phosphate buffer solution including 0.075 M NaH2PO4, pH 7.4 (KOH 

adjusted), 0.1% sodium azide, and 1 mM 3-141 trimethylsilyl-1- [2,2,3,3, -2H4] propionate 

(TSP) as an internal standard. Samples were vortexed for 30 sec and then centrifuged at 6,000 

x g for 10 min. An aliquot of the supernatant (600 uL) for each plasma sample was transferred 

to 5 mm NMR tubes (Bruker, SampleJet 5mm, Billerica MA, USA) for 1H-NMR analysis. 

Samples were analysed with a Bruker Advance III 600 MHz spectrometer equipped with a 5-

mm TCI cryoprobe. Samples were run under automation mode using a Sample Jet with all 

samples refrigerated at 278˚ K until just prior to acquisition. Data were collected at 310˚ K for 

a total of 20 min. 1H-NMR spectra were acquired using the noesygrrp1d and cpmgpr1d pulse 

sequences (32 scans collected for each experiment). Irradiation of the solvent (water) resonance 

is applied during pre-saturation delay (4.0 s) for all spectra and for the noesy also during the 

mixing time (0.01 s). The pulse sequence parameters, most notably the 90° pulse (~ 12 μs) are 

optimised for each sample. The data were collected with approximately 96 k (noesy) or 32 k 

(cpmg) real data points and processed with an exponential line broadening of 0.3 Hz prior to 

Fourier transformation. 

Data were imported into Matlab 7.0 Software (Mathworks, Natick, MA). NMR spectra were 

aligned and normalised by automatically phasing, baseline correcting and referencing the 

dataset to the α-C1H-Glucose doublet (5.233 ppm) 13. The residual water (2.42-3.14 ppm) was 

truncated from the dataset to reduce analytical variability. Statistical recoupling of variables 

was performed on the aligned and normalised spectrum which selected the start and end points 

of clusters 14. Therefore, this output contains several clusters or buckets which are chosen as 

they represent features in the spectral matrix. The cluster value for each sample is simply the 

area under the curve for each cluster (component or peak). These values are used as relative 

concentrations and were multiplied by 1x106 to reduce the number of decimal places. In 

parallel, the raw spectra were imported into Chenomx® for the assignment of metabolites to 

these clusters, with metabolites identified using the profiler and library manager models within. 

This was achieved by comparing 1H-NMR spectra to the spectral library of Chenomx® NMR 

Suite Professional (Chenomx Inc., Edmonton, AB, Canada) as well as referencing from 

published literature and the Livestock Metabolite Database 9,15,16. Once clusters were assigned 
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to a metabolite, the sum of the area under the curve for all clusters belonging to a metabolite 

was calculated.  

2.3.3 Statistical analyses 

A general linear model was used to analyse the fixed effect of days in the feedlot (DOF), breed, 

generation (F1, F2 or F3), and sire (bull) on carcase and performance traits including Aus-Meat 

marble, CM, rib fat, P8 fat and HSCW, amongst others. Least Square Means were calculated 

for each DOF and differences between means adjusted for multiple comparisons using the 

Tukey method. The same general linear model was used to perform analysis of covariance 

adding each carcase trait as a covariate to determine their association with the relative 

concentration of metabolites (dependent variable). This model allowed estimating partial 

correlation coefficients between carcase traits and the relative metabolite concentration. The 

model also included the covariate × DOF interaction to test the hypothesis that the relationship 

(slope) remains constant across DOF. All statistical analyses were done using SAS 9.4 (SAS 

Institute Inc., Cary, New Jersey, USA). Significant statistical differences were declared at P ≤ 

0.05 and tendencies discussed at 0.05 < P ≤ 0.10.  

Principal component analysis’ (PCA) were conducted using the relative concentration of the 

35 identified metabolites as variables in the model. Then, PC1 and PC2 were plotted against 

each other to visualise the clustering of animals according to DOF and CM. The first 5 PC were 

selected for the final PCA as these had an eigenvalue >1.  

2.4 Results 

Table 2.2 shows the mean values for carcase and production traits for each DOF group of 

animals. The DOF groups at the time of blood sampling affected all variables except marbling 

and Wagyu percentage (P > 0.05; Table 2.2). Group 1 sampled at 163 DOF showed thinner 

rump fat, thicker rib fat, and were older compared to animals sampled at 65 (Group 3) and 119 

DOF (Group 2) (P < 0.05). Group 2 (119 DOF) had heavier carcases and live weight compared 

to Group 3 (65 DOF) (P < 0.05). Sire was the most important fixed effect affecting most carcase 

and production traits (P<0.05) except rib fat and EMA (P > 0.10). The accompanying breed 

(crossbreed) only affected age and Wagyu percentage (P < 0.05). Generation (F1, F2, F3) only 

affected growth rate (P < 0.009) and Wagyu percentage (P < 0.001) but did not affect other 

carcase traits (P > 0.05). 
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Table 2.2: Carcase traits, age and live weight of Wagyu cross steers that were blood sampled 

for metabolomics analysis at different days on feed (DOF).  

A, B, C Means within rows without a common superscript differ (P < 0.05). 

 

The standard recoupling of variables identified 315 features or peaks from the 1H-NMR 

spectrum. From these clusters, 35 metabolites were identified using the available Chenomx® 

database of compounds, and their identity validated from previous literature and the livestock 

metabolome database. A representative 1H-NMR spectrum indicating 11 identified metabolites 

is shown in Figure 2.2 to illustrate the multiple features. Also noted are unknown peaks that 

could not be identified and data on these are not presented in this report.  

 

 

 Days on Feed  P-Value 

 65 119 163  DOF Breed Generation Sire 

No. Animals 69 63 49  - - - - 

Aus-Meat Marble Score 6.2 ± 0.56 5.8 ± 0.52 5.9 ± 0.52  0.279 0.404 0.384 0.002 

Camera marbling (%) 25.8 ± 2.22 25.4 ± 2.07 24.0 ± 2.07  0.182 0.996 0.599 0.008 

Rump Fat (mm) 27.6 ± 1.06 A 27.2 ± 0.97 A 23.7 ± 1.01 B  0.006 0.628 0.520 <0.001 

Rib fat (mm) 11.2 ± 0.91 A 10.8 ± 0.84 A 15.8 ± 0.86 B  <0.001 0.799 0.519 0.516 

Eye muscle area (cm2) 40.7 ± 0.89 A 36.7 ± 0.83 B 41.4 ± 0.85 A  <0.001 0.567 0.998 0.308 

Growth rate (kg/d) 0.99 ± 0.031 AB 1.00 ± 0.030 B 1.05 ± 0.032 A  0.009 0.097 0.009 <0.001 

Carcase weight (kg) 428 ± 5.4 B 449 ± 6.0 A 434 ± 5.2 AB  0.007 0.784 0.755 0.044 

Age at Induction (days) 688 ± 29.9 A 666 ± 28.0 A 721 ± 28.0 B  0.001 0.021 0.066 <0.001 

Age at Slaughter (days) 1111 ± 18.1 A 1112 ± 17.2 A 1147 ± 18.9 B  0.026 0.030 0.065 <0.001 

Induction Live Weight (kg) 326 ± 3.1 A 336 ± 2.8 B 321 ± 2.9 A  <0.001 0.373 0.310 0.028 

Exit Live Weight (kg) 745 ± 9.0 B 783 ± 8.3 A 766 ± 8.6 AB  0.003 0.816 0.402 0.054 

Wagyu content (%) 72.6 ± 0.76 73.2 ± 0.71 73.0 ± 0.71  0.254 0.004 <0.001 0.002 
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Figure 2.2: Representative 1H-NMR spectrum of plasma from a Wagyu crossbred steer 

showing clusters assigned to different metabolites. 

 

Table 2.3 shows descriptive statistics for each metabolite. Glucose had the largest number of 

clusters due to the large size of the molecule with the greatest area under the curve; however, 

glucose showed low variability (CV) amongst animals. Smaller metabolites such as formate 

and acetate had lower number of features, lower area under the curve (relative concentrations) 

and larger variability across animals. 

 

Table 2.3: Descriptive statistics of the relative concentration of metabolites identified in blood 

plasma of Wagyu cross steers using H NMR (N=181). 

Variable No. Clusters Minimum Mean Maximum STD Error CV 

3-hydroxybutyrate 2 108.9 174.0 284.6 2.30 17.9 

Acetate 1 65.6 197.9 371.2 4.40 30.1 

Acetone 1 17.0 25.3 49.2 0.34 18.2 

Anserine 1 280.6 339.5 336.3 1.97 7.8 

Arabinose 1 51.8 89.4 120.2 0.97 14.6 

Arginine 1 307.8 387.2 484.4 2.46 8.6 

Aspartate 1 17.5 24.4 30.6 0.19 10.7 

Carnosine 1 63.7 87.7 124.5 0.69 10.6 
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Choline 1 63.7 87.6 124.5 0.69 10.6 

Citrate 2 47.0 86.0 114.4 0.87 13.7 

Citrulline 1 13.1 19.5 19.5 0.17 11.5 

Creatine 2 136.2 174.5 221.6 1.14 8.8 

Creatinine 2 158.0 238.1 320.7 1.86 10.6 

Dimethyl sulfone 1 24.2 35.0 46.9 0.32 12.3 

Formate 1 1.91 3.8 32.9 0.17 60.2 

Glucose 16 2622 3248 4005 19.23 8 

Glutamate 1 16.3 24.2 35.0 0.21 11.9 

Glutamine 8 157.7 218.6 280.9 1.40 9.0 

Glycine 1 98.7 138.6 200.9 1.39 13.6 

Histidine 2 246.0 351.7 490.4 3.52 13.5 

Isobutyrate 3 201.9 246.2 301.2 1.20 6.6 

Isoleucine 2 116.1 145.2 176.0 0.83 7.7 

Lactate 2 323.0 649.8 1484.4 13.88 28.9 

Leucine 2 127.9 168.0 209.5 1.06 8.5 

Lipid 12 1378.4 1968.5 2409.3 12.85 8.8 

Mannose 1 7.8 11.0 17.3 0.12 14.9 

Methionine 3 118.6 168.2 215.5 1.11 9.0 

Methylamine 1 11.5 36.6 54.3 0.52 19.2 

Methyl histidine 3 165.4 200.2 241.6 1.05 7.1 

Phenylalanine 3 24.3 34.4 43.82 0.25 9.8 

Proline 5 39.7 58.6 101.1 0.64 14.8 

Propionate 1 8.3 18.1 24.61 0.15 11.1 

Serine 3 126.9 176.0 297.58 1.49 11.4 

Tyrosine 3 155.4 191.6 229.83 1.11 7.8 

Valine 4 284.4 381.9 480.16 2.36 8.4 

 

The general linear models indicated that the relative concentration of metabolites was not 

affected by breed, generation, or the interactions between fixed effects (P > 0.05), and these 

factors were therefore excluded from the models (data not shown). Results from the analysis 

of covariance showing partial correlation coefficients between carcase traits and the relative 
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concentration of metabolites are presented in Figure 2.3. A strong positive correlation was 

found between CM and marbling score, and growth rate and carcase weight (P < 0.001). A 

modest positive correlation was found between growth rate or carcase weight and subcutaneous 

rump fat (P < 0.001), and a weak negative correlation between marbling and growth rate or 

carcase weight (P < 0.05). Marbling was not correlated with subcutaneous rump or rib fat (P 

> 0.10) and a positive correlation was found between marbling score and EMA (P < 0.01; Table 

3). Eye muscle area tended to be correlated with growth rate (P < 0.10) but not with other 

carcase traits (P > 0.10). 

Camera marbling was positively correlated with 3-hydroxybutyrate, propionate, acetate, 

histidine, creatine, and isoleucine (P ≤ 0.05; Figure 2.3). Similar positive correlations were 

found between Aus-Meat marble score and the relative concentration of those metabolites 

although valine also reached significance (P < 0.05). No negative correlations were found 

between CM or marble score and the relative concentration of metabolites (P > 0.05). 

Subcutaneous rib fat showed a negative correlation with dimethyl sulfone (P < 0.05) and a 

negative tendency with acetate and isobutyrate (P < 0.10). Subcutaneous rump fat depth was 

positively correlated with lipids, glucose, and leucine (P < 0.05), and tended to be positively 

correlated with acetate and lactate (P < 0.10). Rump fat was negatively correlated with anserine 

and arabinose (P < 0.05; Figure 2.3). Carcase weight, growth rate and eye muscle area did not 

show positive correlations with metabolites (P > 0.05) except for that between aspartate and 

growth rate (P < 0.05). Carcase weight and growth rate were negatively correlated 3-

hydroxybutyrate, and growth rate also with creatine (P < 0.05). Eye muscle area did not show 

significant correlations with any metabolite except for a negative trend with mannose, leucine, 

and citrate (P ≤ 0.10; Figure 2.3). 
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Figure 2.3: Heat map illustrating partial correlation coefficients of the relationship between 

metabolites and carcase traits. 
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Camera marbling  0.79*** -0.01 0.04 -0.16* -0.15* 0.07 

Marbling Score   0.03 0.00 -0.12† -0.12 0.19** 

Rib Fat    0.07 0.10 0.03 -0.08 

Rump Fat     0.36*** 0.41*** 0.05 

Growth rate      0.88*** 0.13† 

Carcase weight       0.09 

Eye Muscle Area        

3-Hydroxybutyrate 0.29*** 0.25*** -0.07 0.03 -0.17* -0.15* -0.03 

Propionate 0.27*** 0.22** -0.10 -0.04 0.04 0.04 0.02 

Acetate 0.22** 0.21** -0.13† 0.12† -0.10 -0.07 -0.05 

Histidine 0.19** 0.17* -0.08 0.03 -0.02 -0.01 -0.05 

Creatine 0.15* 0.17* -0.02 -0.06 -0.14* -0.09 0.04 

Isoleucine 0.15* 0.16* 0.02 -0.06 0.07 0.02 -0.09 

Acetone 0.14† 0.13† -0.08 0.09 -0.06 -0.06 -0.06 

Isobutyrate 0.13† 0.14† -0.13† -0.11 0.00 -0.05 -0.04 

Valine 0.12† 0.20** 0.06 0.10 -0.04 -0.01 -0.09 

Arginine 0.08 0.05 -0.00 -0.08 -0.11 -0.10 -0.01 

Anserine 0.07 0.00 -0.01 -0.16* -0.10 -0.10 -0.04 

Methyl-histidine 0.06 0.03 -0.03 -0.14† -0.07 -0.11 -0.06 

Glutamine 0.05 0.12† -0.08 -0.00 0.05 -0.02 -0.04 

Glucose 0.04 0.00 -0.02 0.15* -0.10 -0.10 -0.03 

Glycine 0.04 -0.01 -0.06 0.02 0.13† 0.08 -0.05 

Mannose 0.02 0.03 0.05 0.06 -0.09 -0.04 -0.13† 

Leucine 0.02 0.13† 0.02 0.14* 0.04 0.01 -0.13† 

Glutamate 0.02 0.05 0.06 0.01 0.05 0.01 -0.06 

Serine 0.02 0.04 0.00 -0.00 0.01 -0.08 -0.05 

Lactate 0.01 0.03 -0.08 0.13† 0.03 0.00 0.09 

Tyrosine 0.01 0.02 -0.02 0.07 0.02 0.04 -0.04 

Methionine 0.01 0.06 -0.02 -0.02 -0.08 -0.02 -0.10 

Dimethyl sulfone 0.00 0.06 -0.14* -0.02 -0.09 -0.05 0.08 

Choline -0.01 -0.05 -0.03 0.02 0.02 0.00 -0.03 

Aspartate -0.03 -0.04 -0.04 0.01 0.14* -0.06 -0.08 

Phenylalanine -0.04 0.02 0.06 0.03 0.04 0.02 -0.07 

Creatinine -0.05 -0.10 -0.06 -0.10 0.03 0.00 -0.03 

Formate -0.05 0.03 0.03 -0.11 0.01 0.03 0.02 

Proline -0.05 -0.05 0.06 -0.14† 0.12 0.07 -0.01 

Carnosine -0.06 -0.02 -0.11 0.02 0.07 0.00 -0.10 

Methylamine -0.08 -0.02 -0.10 0.01 0.09 0.0 -0.10 

Arabinose -0.09 -0.10 0.08 -0.14* 0.01 0.04 0.00 

Citrate -0.09 -0.01 -0.11 0.02 0.08 0.00 -0.12† 

Lipids -0.10 -0.09 0.07 0.18** 0.05 0.10 -0.02 

Citrulline -0.14 -0.11 -0.08 0.08 0.06 0.03 -0.01 

***, **, *, † is for P ≤ 0.001, P ≤ 0.01, P ≤ 0.05 and P ≤ 0.10, respectively. 
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The analysis of covariance for CM showed that sire affected the relative concentration of 16 

metabolites (P ≤ 0.05) and tended to affect another 6 metabolites (P ≤ 0.05; Table 2.4). 

Confirming results from correlation analysis, the relative concentration of 3-hydroxybutyrate, 

propionate, acetate, creatine, and histidine increased with CM (P < 0.05) and no metabolites 

decreased with CM. The main effect of DOF affected anserine, arginine, glucose, and methyl 

histidine (P ≤ 0.05); however, these metabolites also showed a DOF × CM interaction as it was 

the trend observed for lipids as well (P ≤ 0.10; Table 2.4). Figure 2.4 illustrates the linear 

relationship between the relative concentration of glucose and marbling for each DOF group. 

Glucose showed a linear decrease with marbling at 65 DOF (P < 0.05), no effect at 119 DOF 

(P > 0.10) and increased with marbling at 163 DOF (P < 0.05). In contrast, the relative 

concentration of arginine (data not shown) and lipids (Figure 2.4) increased with marbling at 

65 DOF (P < 0.05), no change at 119 DOF (P > 0.05) and decreased at 163 DOF (P < 0.05).  

 

Table 2.4: Effect of days on feed (DOF) and camera marbling on the relative concentration of 

blood metabolites in Japanese Black Wagyu crossbred steers. A, B, C Means without a common 

superscript differ (P < 0.05).
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Metabolite 

Days on Feed (DOF)  Marbling  P-value 

65 119 163   Regression ± SE   DOF Marbling Marb × DOF Sire 

3-Hydroxybutyrate 170.4 ± 5.46 181.0 ± 4.96 180.4 ± 5.15  1.82 ± 0.504  0.488 <0.001 0.249 0.482 

Acetate 202.3 ± 10.61 211.9 ± 9.62 181.9 ± 10.01  3.04 ± 0.985  0.156 0.003 0.159 0.529 

Acetone 24.1 ± 0.83 25.6 ± 0.75 26.6 ± 0.78  0.1 ± 0.077  0.668 0.055 0.354 0.657 

Anserine 347.1 ± 4.51 A 335.1 ± 4.09 B 335.8 ± 4.26 B  0.43 ± 0.426  0.005 0.332 0.014 0.062 

Arabinose 91.7 ± 2.18 90.6 ± 1.98 87.7 ± 2.06  -0.17 ± 0.2  0.575 0.207 0.353 0.008 

Arginine 393.2 ± 5.76 A 379.5 ± 5.22 B 390.9 ± 5.43 AB  0.51 ± 0.538  0.032 0.240 0.026 0.071 

Aspartate 24.9 ± 0.46 24.6 ± 0.42 24.0 ± 0.43  0.03 ± 0.042  0.401 0.685 0.350 0.303 

Carnosine 48.2 ± 1.3 50.6 ± 1.18 47.6 ± 1.22  0.12 ± 0.119  0.779 0.424 0.642 0.093 

Choline 88.1 ± 1.59 87.4 ± 1.44 85.6 ± 1.5  0.05 ± 0.144  0.887 0.937 0.747 0.023 

Citrate 86.4 ± 2.08 88.6 ± 1.89 84.1 ± 1.96  0.29 ± 0.19  0.551 0.219 0.359 0.126 

Citrulline 19.0 ± 0.4 19.2 ± 0.36 19.5 ± 0.37  -0.06 ± 0.036  0.117 0.153 0.150 0.024 

Creatine 387.7 ± 6.5 388.9 ± 5.9 376.1 ± 6.14  1.49 ± 0.594  0.499 0.033 0.721 0.012 

Creatinine 31.1 ± 0.66 32.7 ± 0.6 33.7 ± 0.62  -0.08 ± 0.062  0.829 0.483 0.903 0.012 

Dimethyl sulfone 34.5 ± 0.76 34.7 ± 0.69 33.5 ± 0.71  0.01 ± 0.069  0.915 0.952 0.962 0.028 

Formate 3.67 ± 0.12 3.62 ± 0.11 3.49 ± 0.11  0.01 ± 0.011  0.775 0.501 0.600 0.116 

Glucose 3,263 ± 43.8 A 3,182 ± 39.69 B 3,240 ± 41.29 A  1.22 ± 4.059  0.033 0.599 0.031 0.007 

Glutamate 25.0 ± 0.48 25.3 ± 0.43 23.6 ± 0.45  0.04 ± 0.045  0.430 0.760 0.749 0.000 

Glutamine 219.9 ± 3.37 221.4 ± 3.06 212.4 ± 3.18  0.37 ± 0.31  0.952 0.441 0.977 0.006 

Glycine 145.9 ± 3.19 137.1 ± 2.89 131.6 ± 3.01  0.09 ± 0.304  0.484 0.628 0.490 0.285 

Histidine 346.4 ± 8.22 356.4 ± 7.46 361.2 ± 7.76  1.8 ± 0.751  0.609 0.009 0.462 0.035 

Isobutyrate 243.2 ± 2.83 247.3 ± 2.57 246.2 ± 2.67  0.44 ± 0.257  0.963 0.068 0.893 0.011 

Isoleucine 148.6 ± 1.99 143.4 ± 1.8 139.0 ± 1.88  0.38 ± 0.189  0.657 0.186 0.973 0.992 

Lactate 620.4 ± 31.88 657.3 ± 28.92 748.0 ± 30.08  -1.24 ± 2.984  0.881 0.854 0.868 0.064 

Leucine 166.7 ± 2.51 167.6 ± 2.27 163.9 ± 2.37  0.1 ± 0.227  0.946 0.768 0.929 0.076 

Lipid 1,989 ± 28.7 1,977 ± 26.04 1,931 ± 27.08  -2.15 ± 2.66  0.185 0.167 0.073 0.014 

Mannose 10.9 ± 0.29 11.3 ± 0.26 11.0 ± 0.27  -0.01 ± 0.026  0.897 0.749 0.970 0.046 

Methionine 171.0 ± 2.57 171.1 ± 2.33 162.2 ± 2.42  0.16 ± 0.24  0.758 0.897 0.998 0.012 

Methylamine 36.4 ± 1.25 38.3 ± 1.14 35.7 ± 1.18  0.15 ± 0.115  0.707 0.287 0.533 0.210 

Methyl histidine 204.0 ± 2.47 A 198.8 ± 2.24 B 197.5 ± 2.33 B  0.23 ± 0.23  0.040 0.404 0.096 0.096 
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Phenylalanine 33.9 ± 0.63 34.2 ± 0.57 33.9 ± 0.59  -0.03 ± 0.056  0.946 0.612 0.915 0.618 

Proline 58.7 ± 1.55 57.7 ± 1.4 57.4 ± 1.46  -0.08 ± 0.14  0.968 0.472 0.910 0.204 

Propionate 17.2 ± 0.32 17.9 ± 0.29 18.6 ± 0.31  0.1 ± 0.031  0.904 < 0.001 0.899 0.004 

Serine 174.5 ± 3.26 172.7 ± 2.95 172.6 ± 3.07  -0.09 ± 0.294  0.786 0.791 0.837 0.260 

Tyrosine 192.5 ± 2.49 192.9 ± 2.26 190.3 ± 2.35  0.04 ± 0.226  0.604 0.864 0.599 0.000 

Valine 375.1 ± 5.65 380.4 ± 5.13 374.7 ± 5.33   0.84 ± 0.511   0.936 0.104 0.882 0.109 
 

A, B, C Means without a common superscript differ (P < 0.05). 
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Figure 2.4: Analysis of covariance for lipids and glucose showing the DOF and CM 

interaction. 
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The PC1 explained only 11.61% of the variability within the dataset of 35 identified 

metabolites and PC2 explained only 4.46% of the variability. The plot with both PC1 and PC2 

demonstrated that there was no clustering of animals according to DOF (Figure 2.5) with the 

data points from different groups randomly distributed. Similarly, this plot did not highlight a 

strong relationship between PC and CM relationship between (Figure 2.6).  

 

Figure 2.5: Principal component analysis of 35 blood metabolites of Wagyu-cross steers 

showing PC 1 vs PC 2 with the days on feed (DOF) group coloured for each data point.  

 

 

 

 

 

 

 

 

 

 

 

2.5 Discussion 

A hypothesis tested in the present study was that the concentrations of blood metabolites were 

associated with marbling and other carcase traits in Wagyu-cross steers. This hypothesis was 

supported by significant associations between the relative concentration of metabolites and 

carcase traits. The blood metabolome was ascertained at approximately 300 days before steers 

were slaughtered to collect data on carcase traits. This is highly important because it suggests 

that the metabolome could be used for the early identification of steers with the propensity to 

marble, which could have major implications for efficient utilization of feed in steers that 

produce a carcase of high value. 

Principal Component 1 
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2.5.1 Genetics 

 In addition, the potential for metabolomics to inform genetic selection is supported by the 

significant effect of sire on both carcase traits and the metabolic profile of animals. Sire was 

the single most important factor affecting carcase and performance traits and the relative 

concentration of metabolites. Sixteen of 35 metabolites were affected, and a further 6 

metabolites tended to be affected, by sire. On average, sire explained 21.5% and marbling 4.8% 

of the variability in the relative concentration of these significant metabolites. The effect of sire 

on carcase traits is expected because of the known heritability of these in Wagyu cattle 1. 

However, the effect of genotype on blood metabolomics of cattle has to the knowledge of the 

authors not previously been reported. A recent study reported that blood metabolites were 

associated with feed efficiency in feedlot cattle, a trait that also affects carcase traits 2. Genetic 

progress could be improved if metabolomic information is considered together with pedigree 

and genomic information as previously suggested 3,4.  

In addition to the early identification of animals with propensity to marble and genetic 

selection, the identification of metabolites correlated with performance and body composition 

could improve the understanding of fat and muscle biology, metabolic pathways, and the 

function of metabolites in cattle. The interpretation of metabolomics data in cattle is 

challenging due to limited information on the synthesis and utilization of metabolites for tissue 

metabolism, deposition, and mobilization. Complex interactions can affect the concentration 

of metabolites in blood such as absorption of metabolites from the gastrointestinal tract, 

synthesis of metabolites in organs and tissues, and uptake of metabolites by tissues for 

deposition and degradation (e.g., complete oxidation). A recent review found 79 articles that 

identified 8 or more metabolites in cattle 5, suggesting that the use of metabolomics in bovine 

studies is relatively unexplored. The present study found positive and negative associations 

between multiple metabolites and the extent of tissue accrued in different depots (intramuscular 

and subcutaneous fat, growth rate, eye muscle area and carcase weight at slaughter). Therefore, 

blood metabolomics in cattle could help to unravel metabolic pathways and mechanisms of fat 

and muscle in body systems. Blood proteomics has shown potential for biomarkers of 

tenderness in cattle but the complexity of biological systems makes it unlikely that any single 

biomarker will have an outstanding effect 6. In the present study none of the metabolites were 

strongly correlated to carcase traits. However, the fact several metabolites showed significant 
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correlations with carcase traits indicates that further research is warranted on the identification 

and potential applications of using multiple biomarkers or metabolites. 

2.5.2 Fat Metabolism 

Marble scores ranged from 3 to 9+ in the present study (average of 5.97) and such variability 

across animals decreases with increased Wagyu content 7. Japanese Black Wagyu cattle may 

be a good model to study fat metabolism in cattle due to such extent of marbling in this breed. 

Both carcase weight and marbling should be considered together in any balanced breeding 

program because the value of a carcase is determined by both traits and there is often a trade-

off with a negative correlation between these two traits 8. In the present study animals that grew 

faster tended to have larger EMA, heavier carcases, thicker subcutaneous rump fat and lesser 

marbling. The negative association between marbling and carcase weight may suggest that 

animals that direct more nutrients to IMF deposition may direct less nutrients to skeletal muscle 

and bones resulting in a lower carcase weight. Some metabolites reflected this negative 

association such as 3-hydroxybutyrate and creatine which were positively associated with 

marbling and negatively with growth rate or carcase weight. Both 3-hydroxybutyrate and 

creatine are key energy sources for cattle; however, 3-hydroxybutyrate is a key metabolite 

involved in fat tissue metabolism 9. Creatine is a key metabolite facilitating the recycling of 

ATP predominantly in brain tissue and muscle 10. In agreement with the present study, double-

muscled Belgian Blue cattle had heavier carcases with higher proportion of lean tissue in the 

7th rib cut which coincided with lower plasma concentration of creatine and higher of creatinine 

compared to conventional Belgian Blue cattle. A previous study 11 reported higher 

concentration of 3-hydroxybutyrate for genetic lines with lighter carcases and lower body fat 

proportion in Charolais x Holstein crosses although marbling score was not different between 

lines. The metabolite 3-hydroxybutyrate originates from either absorption of acetate from the 

rumen (~70%) or hepatic oxidation of long chain fatty acids, particularly from fat mobilization 

during negative energy balance 12. Animals in the present study were growing and in positive 

energy balance, so it is speculated that the positive association between 3-hydroxybutyrate and 

marbling is either due to greater absorption of acetate from the rumen or faster fat turnover rate 

in animals with higher marbling. Therefore, circulating 3-hydroxybutyrate in cattle seems to 

reflect different metabolic pathways depending on whether animals are in positive or negative 

energy balance. Furthermore, the present study suggested that 3-hydroxybutyrate is one of the 

most important metabolites for IMF deposition in Wagyu feedlot cattle under positive energy 
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balance and fast growth rates. Mobilization of protein from muscle and fat under negative 

energy balance is also reflected through an increase of 3-methylhistidine 9 and decrease of 

creatinine 13. However, these metabolites were not correlated to any carcase trait in the present 

study which could be due to the positive energy balance of steers. 

Most of the energy used by ruminants comes from ruminal microbial degradation of feed which 

produces volatile fatty acids (VFA) with acetic, propionic and butyric acids being the most 

important 14. Acetate is a key lipogenic substrate in ruminants and once absorbed in the blood 

most of the acetate is converted to 3-hydroxybutyrate, oxidized via the tricarboxylic acid cycle 

(TCA) or used for fatty acid synthesis 15. Propionate reaches the liver where it is either oxidized 

or enters the TCA cycle as succinyl-CoA to form glucose. However, there is no apparent 

agreement in the literature as to which metabolites are the most important precursors of the 

different fat depots and muscle defining body composition in cattle. It has been reported that 

acetate and glucose are the major precursors for fatty acid biosynthesis, with glucose being 

preferred by intramuscular adipocytes and acetate by subcutaneous fat depots 12,16-18. It has 

been shown that plasma propionate increases the secretion of insulin which activates lipogenic 

enzymes and accelerates fatty acid synthesis increasing intramuscular fat 19. Smith and Crouse 

20 demonstrated in vitro that 70-80% of the acetyl units contributed to lipogenesis in 

subcutaneous fat were from acetate, 50-75% in intramuscular fat were from glucose, and 15-

30% in either intramuscular or subcutaneous fat were from lactate. A previous review 12 also 

concluded that the main precursors for IMF deposition in ruminants are lactate and glucose, 

and acetate to a lower extent. The present study supports the hypothesis that both circulating 

propionate and acetate have a similar positive influence on marbling however 3-

hydroxybutyrate seems to play the most important role. In contrast, we did not find significant 

relationships between lactate or glucose and marbling to support previous observations. 

Acetate was the only metabolite that tended to be positively correlated with both intramuscular 

and subcutaneous rump fat depots, and negatively with subcutaneous rib fat thickness. In 

addition, subcutaneous rump fat tended to be positively associated with glucose, lipids, leucine, 

and lactate. However, none of these metabolites were correlated with marbling, subcutaneous 

rib fat, carcase weight or growth rate. The positive correlation between lipids and rump fat 

contrasts with trends reported in post-partum dairy cows losing weight under negative energy 

balance, which showed that circulating lipids (triglycerides, phospholipids and cholesterol) 
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increased concomitantly with a decrease in body weight, condition score, backfat thickness and 

LTL muscle diameter 13.  

2.5.3 Amino Acids and Muscle Metabolism 

Valine, isoleucine and leucine are branched chain amino acids known to enhance lipolysis at 

insufficient or excessive concentrations but can also increase lipogenesis 21. In the present 

study, these amino acids were positively associated with marbling and in the case of leucine 

with rump fat as well. Isobutyrate is a branched chain volatile fatty acid produced by rumen 

fermentation of amino acids 22 however their effect on fat synthesis and deposition in cattle 

seems unknown. Based on the positive associations between these metabolites and IMF 

reported in the present study, we speculate that branched chain amino acids, histidine and 

isobutyrate could promote lipogenesis or fat deposition, or both in IMF. However, these are 

just speculations and further research is required to understand the role of these metabolites on 

fat and muscle metabolism. 

In the present study, some metabolites seemed to be involved in both muscle and IMF 

metabolism (3-hydroxybutyrate and creatine), others in both intramuscular and subcutaneous 

fat depots but not in body growth (e.g., acetate), others in IMF only (e.g., propionate), and 

others only significant for one of the subcutaneous fat depots only (e.g., lipids on rump fat). 

The fact that some metabolites were correlated with only one of the fat depots or tissues could 

allow more targeted genetic progress for one (e.g., marbling) against other tissues or depots 

which have lower commercial value (e.g., subcutaneous fat). The marked differences found 

between rib and rump fat metabolism of the present study requires further research to 

understand the reasons for this finding. 

2.5.4 Effect of DOF on the Blood Metabolome 

The second objective of the present study was to investigate the influence of the length of time 

that cattle consumed a high grain and starch diet (DOF) on the blood metabolome and 

determine if the correlation between metabolites and marbling was affected by DOF. This is 

critical information that needs to be known before an attempt is made to use metabolomics for 

the prediction of important carcase traits or genetic selection in cattle as the amount of DOF at 

sampling may alter the metabolomic profile of the animals. Both carcase and production traits 

were affected by DOF, which was unexpected because animals in the present study were 

randomly selected from a commercial producer of feeder cattle and the animals were all taken 
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from one breeding cohort of animals. Importantly, marbling was not different between DOF 

groups, indicating that the results reported on the relationship between the metabolome and 

marbling is not confounded by DOF groups having different marbling. No metabolites were 

affected by the DOF main factor only and, therefore, the relative concentration of metabolites 

does not seem to be affected by the length of time animals consume a high grain diet in the 

ranges evaluated in the present study. These results were supported by the PCA which did not 

show any clustering of data points according to DOF.  

A similar study 23 to the present one, identified 45 metabolites to examine the relationship 

between the blood metabolome and residual feed intake of feedlot cattle sampled at 14, 42 and 

70 DOF. The metabolites selected as predictors of residual feed intake differed amongst DOF; 

however, it was unclear if these results were related to recent diet changes, the length of time 

animals consumed a high-grain diet, or different environmental conditions across sampling 

dates, amongst others. The present study used animals well adapted to the high-grain diet 

(animals were consuming the high grain diet for at least 54 days at time of sampling) and all 

animals were sampled on the same date to avoid the effect of environmental conditions 

Arginine, glucose, and lipids were the only metabolites influenced by the interaction between 

DOF and CM. The relative concentration of glucose increased, and lipids decreased, as 

marbling increased in animals sampled later (163 DOF); however, the opposite trend was 

reported for animals sampled earlier in the feeding period (65 DOF). The findings in the present 

study suggest that the relationship between marbling and arginine, glucose and lipids is affected 

by DOF, and thus DOF needs to be considered to predict marbling from these metabolites. This 

is an important finding as the ability to sample and identify desirable animals at an earlier stage 

can reduce the economic cost of feeding these animals for a longer time. Therefore, the most 

promising metabolites to predict marbling are those not affected by DOF, or the length of time 

animals consume a high grain diet in the feedlot. 

2.6 Conclusion  

Blood metabolomics in cattle shows potential biomarkers that could help to better understand 

fat and muscle metabolism and predict economically important carcase traits at 10 to 14 months 

before slaughter. These could be used to identify and select individual animals with desirable 

carcase traits. The length of time in the feedlot when animals are sampled appears not to be a 

critical factor affecting the blood metabolome. Genotype has a large influence on both blood 
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metabolomics and carcase and production traits suggesting that 1H NMR metabolomics could 

assist with genetic improvement of cattle for relevant production and carcase traits and meat 

quality. 
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Chapter 3: Changes in the blood metabolome of Wagyu crossbred 

steers with time in a feedlot and relationships with marbling 

 

Connolly, S., Dona, A., Hamblin, D., D’Occhio, M. J. & González, L. A. Changes in the blood 

metabolome of Wagyu crossbred steers with time in the feedlot and relationships with 

marbling. Scientific Reports 10, 18987, doi:10.1038/s41598-020-76101-6 (2020).  (Published) 

 

Overview 

The focus of this chapter was to study the relationship between the blood metabolome at two 

different sampling points and to examine the relationship with carcase traits, particularly 

marbling. The objective was to determine changes in the metabolome from middle to late in 

the feedlotting process due to animals being at different stages of physiological maturity. This 

information is required for potential commercial applications of biomarkers of marbling.  
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3.1 Abstract 

Wagyu crossbred steers (n = 167) were used to (1) compare the metabolome of individual 

animals at two distant time-points (days 196 and 432) in a feedlot (this corresponded to 272 

and 36 days before slaughter); and (2) determine relationships between the metabolome and 

marbling, and the effect of days in the feedlot (time-points) on these relationships. 1H-NMR 

spectroscopy followed by standard recoupling of variables analysis produced 290 features or 

‘peaks’ from which 38 metabolites were identified. There was a positive correlation between 

the relative concentration (RC) at days 196 and 432 for 35 of 38 metabolites (P > 0.05). The 

RC of 21 metabolites mostly involved in muscle energy and glucose metabolism increased (P 

< 0.05) from day 196 to 432, and the RC of 13 metabolites mostly involved in lipid metabolism 

decreased (P < 0.05). There were 14 metabolites correlated with marbling including 

metabolites involved in energy and fat metabolism (glucose, propionate, 3-hydroxybutyrate, 

lipids). The relationship between marbling and the RC of metabolites was affected by time-

point, being positive for 3-hydroxybutyrate and acetate (P < 0.05) at day 432 but not at day 

196. The findings indicate that the blood metabolome in Wagyu crossbred steers changes with 

time in a feedlot. Notwithstanding, the metabolome has potential to predict marbling in Wagyu. 

The ability to predict marbling from the blood metabolome appears to be influenced by days 

in a feedlot and presumably the stage of development towards a mature body conformation. 

3.2 Introduction 

Cattle with Wagyu (Bos taurus) genetics have a high propensity to accumulate intramuscular 

fat (marbling) and are targeted at markets for premium beef 1,2. Wagyu and Wagyu crossbred 

cattle typically undergo periods of 350 to 650 days in a feedlot to achieve high marbling. 

Animals that fail to achieve the necessary marbling are heavily discounted, and the cost of 

production can be greater than the market value. The final grading of Wagyu carcases occurs 

after slaughter, and hence there is considerable interest in identifying ways to predict the 

carcase outcome for individual animals. Marbling has a relatively high heritability (0.38-0.50) 

2,3 in Wagyu. 

The blood metabolome has emerged as an important source of biomarkers that have the 

potential to predict production, health and disease in livestock4-6. In a recent study, the blood 

metabolome of Wagyu crossbred steers was found to be associated with important production 

traits such as growth rate, carcase weight, subcutaneous rump fat, and marbling (intramuscular 

fat)7. Certain metabolites were positively associated with different production traits and other 
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metabolites had a negative association. Irrespective, the findings showed that the blood 

metabolome has potential to offer biomarkers that can be used to select individual Wagyu steers 

for performance in a feedlot. Sire of the steers was the single most important factor affecting 

the blood metabolome, which suggests that metabolome biomarkers could potentially also be 

used to select Wagyu sires7. 

In the study in Wagyu steers, the blood metabolome was determined 300-400 days before 

animals were slaughtered7. Cattle undergo metabolic and physiological adjustments during 

growth and development towards a mature body conformation and size. Bone growth is fastest 

in younger animals and precedes muscle growth 8,9. Fat deposition increases with age and as 

animals reach a mature body size. Amongst the different fat deposits, abdominal fat is the 

earliest to accumulate followed by intermuscular fat, subcutaneous fat, and then marbling1. 

Based on the results within the present study, features of the blood metabolome in cattle change 

significantly with time in a feedlot. It is entirely feasible that specific associations of the 

metabolome with production and carcase traits may also differ over time. For example, it could 

be predicted that metabolites linked to marbling may have a stronger association with marbling 

in older, maturing animals. With the above background in mind, the aims in the present study 

were (1) to compare the metabolome for individual Wagyu crossbred steers at days 196 and 

432 in a feedlot (this corresponded to 272 and 36 days before slaughter); and (2) to determine 

relationships between the metabolome and marbling, and the effect of days in the feedlot (time-

points) on these relationships. The sampling time-points were 236 days apart which should 

have meant that animals would be in different metabolic and physiological status related to 

degree of maturity. The findings may help to build the body of knowledge on relationships 

between the metabolome and important production traits in cattle. The findings could also have 

the potential to identify specific metabolites that might be used as predictive biomarkers of 

high market value in cattle. 

3.3 Materials & Methods 

3.3.1 Animals and experimental design 

Wagyu crossbred steers (n = 167) from a single cohort and same management were used in the 

study. There was an even distribution of animals with different Wagyu genetics: there were 54, 

56 and 53 animals within the first cross (50% Wagyu), second cross (75% Wagyu) and third 

cross and above (≥87.5% Wagyu), respectively. Fullblood Wagyu were predominantly crossed 

with Shorthorn (50%), Angus (10%), Brahman (38%) and other breeds (12%). Animals were 
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maintained in a commercial feedlot in southern Queensland, Australia, and allowed ad-libitum 

consumption of feed. Changes in diet were implemented at days 6, 12 and 263 in the feedlot 

(Figure 3.1). Diet composition and number of days each diet was fed are shown in Table 3.1 

with chemical analysis done for diets 3 and 4 when blood sampling occurred. Animals were 

sampled at day 196 (early feedlot period) and day 432 (late feedlot period) (Figure 3.1). These 

sampling time-points corresponded to 272 and 36 days before animals were slaughtered (Figure 

3.1). 

 

Figure 3.1: Timeline of events relative to experimental day for Wagyu crossbred feedlot cattle 

to measure blood metabolomics. 
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Table 3.1 Diet ingredients and composition. 

*Values are estimates from feed composition tables of the ingredients making up the diet.  

 

Blood samples for metabolome analysis were obtained at days 196 and 432. On sampling days, 

animals were removed from their pens at 0600 h before feeding, and blood was collected 

between 0700 h and 1030 h. An 18G needle and evacuated lithium heparin tube (Vacutainer 

BD, Becton Dickinson, Frankland Lakes, NJ) were used to take coccygeal vein samples.  

Samples were immediately placed on ice for up to 20 min and centrifuged at 10,000 × g for 15 

min. Plasma was stored at -80°C until metabolome analysis. 

 

Ingredient Unit Diet 1 Diet 2 Diet 3 Diet 4 

Steam Flaked Barley % as fed 21.5 28.5 37.5 47.0 

Steam Flaked Wheat % as fed 21.0 22.5 14.5 19.0 

Finisher Supplement % as fed 5.0 5.2 0.0 1.7 

Growth Supplement % as fed 0.0 0.0 5.0 3.5 

Molasses % as fed 12.0 10.1 4.8 5.0 

Vegetable Oil % as fed 0.0 1.2 1.4 1.5 

Brewers Sweet Grain % as fed 0.0 0.0 15.0 8.0 

Sunflower Meal % as fed 5.5 5.0 1.5 0.0 

Corn Silage % as fed 12.0 12.0 12.8 9.8 

Barley Straw % as fed 12.0 9.5 7.5 4.5 

Lucerne Hay % as fed 11.0 6.0 0.0 0.0 

Chemical Composition      

Dry Matter % - - 94.8 95.2 

Moisture % - - 5.2 4.9 

Acid Detergent Fibre % - - 9.0 7.0 

Dry Matter Digestibility % - - 81.0 85.0 

Inorganic Ash % - - 6.0 6.0 

Organic Matter % - - 94.0 94.0 

Crude Fat % - - 4.0 4.1 

Crude Protein % 14.1* 13.8* 12.5 12.4 

Neutral Detergent Fibre % DM 29.3* 25.6* 20.0 17.0 

Metabolizable Energy MJ/kg DM 10.9* 11.6* 13.0 13.5 

Ionophore (monesin) ppm 21.3* 22.2* 23.4* 23.9* 

Net Energy of Gain MJ/kg DM 4.4* 4.9* 5.5* 6.0* 

Net Energy of Maintenance MJ/kg DM 7.0* 7.6* 8.3* 8.9* 
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3.3.2 Carcase data 

Carcase grading data was recorded by an accredited assessor using the Aus-Meat method 10 

with measurements of hot standard carcase weight (HSCW), marbling score, rib eye muscle 

area (EMA), and subcutaneous rib and rump fat thickness. The subjective Aus-Meat marbling 

score was assessed by a trained, accredited assessor on a scale of 0 to 9+ with 0 being the least 

and 9+ the greatest marbling. Marbling percentage was measured objectively using a 

hyperspectral camera (camera marbling, CM) (HK-333 camera; Hayasaka Rikoh Co. Ltd., 

Sapporo, Japan)11. 

3.3.3 Metabolite profiling 

Plasma samples were prepared for metabolome analysis in accordance with a published 

protocol 12. Samples were thawed at room temperature and an aliquot (350 μL) was mixed with 

350 μL of aqueous (80% H2O:20% D2O) phosphate buffer solution including 0.075 M 

NaH2PO4, pH = 7.4 (KOH adjusted), 0.1% sodium azide, and 1 mM 3-141 trimethylsilyl-1- 

[2,2,3,3, -2H4] propionate (TSP) as an internal standard. Samples were mixed on a vortex for 

30 sec and centrifuged at 6,000 × g for 10 min. Aliquots (600 µL) of supernatant for each 

sample were pipetted into 5 mm NMR tubes for 1H-NMR analysis (Bruker, SampleJet 5 mm, 

Billerica MA, USA). A quality control comprising equal volumes of approximately 10 samples 

was included after every 15 samples. 

A Bruker Advance III 600 MHz spectrometer equipped with a 5 mm TCI cryoprobe was used 

to analyse the samples. Samples were refrigerated at 4.85 °C prior to acquisition and run using 

a Sample Jet in automatic mode. Data was collected at 36.85 °C for 20 min. Noesygr and 

cpmgpr1d pulse sequences (32 scans collected for each experiment) were used to acquire the 

1D 1H-NMR spectra. Irradiation of the solvent (water) resonance was applied during pre-

saturation delay (4.0 s) for all spectra and for the noesy also during the mixing time (0.01 s). 

The pulse sequence parameters were optimized for each sample, particularly the 90° pulse (~12 

μs). The data was collected for each sample with approximately 32k (cpmg) or 96 k (noesy) 

real data points and processed with an exponential line broadening of 0.3 Hz prior to Fourier 

transformation. 

Spectral data was imported into Matlab 7.0 software (Mathworks, Narick, MA). Each 

individual spectra was aligned and automatically phased, baseline corrected and referenced to 

the α-C1H-Glucose doublet at 5.233 ppm 13. Spectra was then normalized using probabilistic 

quotient normalization. Statistical recoupling of variables (SRV) was used on the processed 

spectrum to calculate the start and endpoint of components or clusters. Bucketing is also 
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another name used for the statistical method in SRV 14. The SRV output contains the clusters 

or peaks with the area under the curve calculated which is equivalent to the relative 

concentration (RC) of each individual peak. Sample spectra were then imported into 

Chenomx® NMR Suite Professional (Chenomx Inc., Edmonton, AB, Canada), which was used 

as the reference library to identify peaks or features that belong to a metabolite according to its 

ppm using the spectral library along with published literature 15. The RC of all peaks that 

belonged to the same metabolite were added to obtain the total RC of each metabolite for 

analysis. 

3.3.4 Statistical analyses 

The feature or cluster dataset was multiplied by a factor of 106 to reduce the number of decimal 

places. All statistical analyses were performed using SAS (v 9.4; SAS Institute Inc., Cary, NJ, 

USA). Pearson correlation coefficients were calculated between the RC of the identified 

metabolites at days 196 and 432 to determine the relationship between them across animals. 

Principal component analysis (PCA) was conducted using 38 identified metabolites to reduce 

the dimensionality of the dataset and then examine the effect of sampling time-point on the 

clustering and separation along the principal components (PC). The components with an 

eigenvalue >1 were used in the final PCA and data is presented for the first three PC explaining 

the largest variation in the dataset. A generalized linear model (GLM) was used on the PCA 

scores output to examine the effect of time-point and Pearson correlation coefficients between 

marbling and the PC scores were also calculated. 

The differences between time-points in the RC of metabolites were analysed using a mixed-

effects linear regression model containing the fixed effect of camera marbling (CM) as a 

covariate, time-point as the repeated measure, and the CM × time-point interaction. This model 

tested for different slopes between time-points, i.e., the regression between CM and the 

dependent variable for each time-point. Animal ID was a random effect. Any factor which was 

not significant was removed from the model and the model was re-run. All data was checked 

for normality and log-transformed where required. Outliers were detected using studentized 

residual and those strong residuals with a value > 3.5 or < – 3.5 were removed from the dataset. 

There were 50 outliers in total that were removed out of 21,759 data points analysed. 
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3.4 Results 

3.4.1 Carcase attributes 

Descriptive statistics of carcase measurements, weights and feed intake are shown in Table 

3.2. Feedlot exit weight had greater variation than the feedlot induction weight. The average 

marbling score was 6.66 and average camera marbling (CM) was 27.81%; however, these 

values showed wide ranges. Marbling score had greater variability compared to CM. Carcase 

weight and eye muscle area (EMA; Longissimus Thoracis et Lumborum, LTL) had the lowest 

coefficients of variation (CV) of all measurements. The feed intake in relation to percentage 

BW had an average of 2.86 and variation of 10.25.  

 

Table 3.2: Descriptive statistics of Wagyu crossbred steers (n = 167).  

 

3.4.2 Metabolome spectral data 

The dataset produced from analysis of the metabolome spectral data using statistical 

recoupling of variables (SRV) contained 290 peaks or clusters which were mapped to the 

spectral library of Chenomx®. This identified 38 metabolites based on the ppm of the 

individual clusters from the spectral library and published literature15. Pearson correlation 

coefficients between the RC of each feature and each metabolite at days 196 and 432 were 

calculated. The correlation between the RC at days 196 and 432 ranged from -0.13 to +0.78 

across all 290 features (data not shown). None of the negative correlation coefficients were 

significantly different than zero (P > 0.05) and 215 of 290 features with r > +0.15 were 

significant (P < 0.05). Of 38 identified metabolites, only serine, proline and mannose were not 

Variable Minimum Mean Maximum Standard 

Error 

Coefficient 

of Variation 

Wagyu Percent (%) 50 71.7 98.7 0.99 24.87 

Age at Induction (Days) 460 614 1041 6.89 20.14 

Feedlot Induction Weight (kg) 246 332.0 430 1.63 8.81 

Feedlot Exit Weight (kg) 554 731.4 929 3.96 9.55 

ADG Feedlot (kg) 0.42 0.87 1.30 0.008 17.34 

Aus-Meat Marble Score 2.00 6.66 9.00 0.112 10.89 

Camera Marbling (%) 16.3 27.81 44.5 0.325 13.82 

HSCW (kg) 323 427 542 2.253 6.40 

EMA (cm2) 60 79.4 98 0.469 1.87 

Rump Fat (mm) 10 16.4 37 0.301 29.84 

Rib Fat (mm) 3 7.10 22 0.172 24.67 

Feed intake (% Body Weight)  2.05 2.86 3.61 0.016 10.25 
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significant (P > 0.05) with the remaining 35 metabolites showing a positive correlation 

between the RC at days 196 and 432 (Figure 3.2). 

 

Figure 3.2: Pearson correlation coefficient between the relative concentration of plasma 

metabolites at days 196 and 432 in a feedlot in Wagyu crossbred steers  

***, **, *, † P ≤ 0.001, P ≤ 0.01, P ≤ 0.05 and P ≤ 0.10, respectively. 

 

3.4.3 Principal component analysis 

The principal component analysis (PCA) score plot indicated a clear separation between 

samples taken at day 196 compared with day 432, with the first three components explaining 

61.22% of the variation in the dataset (Figure 3.3). Further analyses of the principal component 

(PC) scores showed that most animals showed positive values for PC2 and PC3 on day 196 but 

negative PC2 and PC3 on day 432 (Table 3.3). PC1 and PC4 were negative at day 196 and 

positive at day 432, although the difference between time-points was smaller compared to PC2 

and PC3 (Table 3.3). 
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Figure 3.3 Score plot of the top 3 principal components (PC1 to PC3) obtained from 38 blood 

metabolites of Wagyu crossbred steers sampled at day 196 (blue) and day 432 (red) in a feedlot. 

 

 

Table 3.3 The effect of time-point in a feedlot on five principal components 1 to 3 (Prin1-

Prin3) and Pearson correlation coefficients between principal component scores and marbling 

of Wagyu crossbred steers. 

***, **, * P ≤ 0.001, P ≤ 0.01 and P ≤ 0.05, respectively, for the Pearson correlation coefficients. 

PC = Principal Component 

 

 
Time-point  

P-Value 

 

R2 

 

Pearson r with 

marbling 

 Day 196 Day 432 

PC1 -0.279 ± 0.0758 0.277 ± 0.0756 <0.001 0.077 0.110* 

PC2 0.561 ± 0.0654 -0.558 ± 0.0652 <0.001 0.314 -0.183*** 

PC3 0.517 ± 0.0676 -0.514 ± 0.0674 <0.001 0.267 0.161** 

PC4 -0.224 ± 0.0769 0.223 ± 0.0767 <0.001 0.050 -0.159** 

PC5 0.021 ± 0.0789 -0.021 ± 0.0787 0.708 0.0004 0.155** 
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The R2 values indicated that PC2 and PC3 were the two components that explained the 

largest proportion of the variability between time-points. All PC were significantly correlated 

with marbling (P < 0.05); however, PC2 had the largest Pearson coefficient. Both PC2 and 

PC4 were negatively correlated with marbling (P < 0.05) whereas PC1, PC3 and PC5 were 

positively correlated with marbling (P < 0.05; Table 3.3). 

Figure 3.4 shows the loading or pattern plot for PC1 and PC2 which explained 

approximately half of the variability in the dataset. Lipid groups (lipids, very low-density 

lipoprotein (VLDL), and glycoprotein acetyls) and choline showed negative loading on PC1 

and positive loading on PC2 which characterised samples at day 196 as shown in Table 3. 

Metabolites with positive loading on PC1 and negative loading on PC2 were glucose, methyl 

histidine, arginine, anserine and creatinine (Figure 3.4) which characterised samples at day 

432. Only lactate and the lipid groups showed negative loading on PC1 (Figure 3.4). Allantoin, 

acetate and amino acids (aspartate, leucine, isoleucine, carnosine, and proline) showed high 

positive loadings on both PC1 and PC2 (Figure 3.4). Figure 3.5 shows the loading plot for PC2 

and PC3 where approximately 30% of the variation was explained and the lipids (VLDL, 

glycoprotein acetyls and lipids) and choline clustered together with high positive loading on 

PC2 and negative on PC3. Arginine, anserine, unsaturated lipids, and glucose had high positive 

loading on PC3, whereas creatinine, citrate and methylamine showed high negative loading 

(Figure 3.5). 
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Figure 3.4 Loading plot for principal components 1 and 2 with 38 metabolites identified in 

blood of Wagyu crossbred steers. 
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Figure 3.5 Loading plot for principal components 2 and 3 of 38 blood metabolites of Wagyu 

crossbred steers sampled at days 196 and 432 in a feedlot. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.4.4 Metabolite relative concentrations and relationships with marbling 

The average relative concentration (RC) of each metabolite for each sampling point and the 

regression coefficient between the RC and marbling are shown in Table 3.4. The CM × time 

interaction was significant (P > 0.05) for 8 metabolites (3-hydroxybutyrate, acetate, allantoin, 

histidine, isobutyrate, methyl histidine, tyrosine, and valine). Only 5 of 38 identified 

metabolites were not affected by time-point (P > 0.05); these were: arginine, mannose, methyl 

histidine, propionate, and serine (Table 3.4). Of those metabolites with no significant CM × 

time interaction, fifteen metabolites showed an increase (P < 0.05) in RC from day 196 to day 

432; these were: acetone, anserine, citrate, citrulline, creatine, creatinine, dimethyl-sulphone, 

formate, glucose, glutamate, glutamine, glycine, lactate, methionine, and methylamine. In 

contrast, ten metabolites showed a decrease (P < 0.05) in RC from day 196 to day 432; these 

were aspartate, carnosine, choline, glycoprotein acetyls, isoleucine, leucine, VLDL, lipids, 

proline, and unsaturated lipids. The average RC did not differ (P < 0.05; Table 3.4) between 

days 196 and 432 for 3-hydroxybutyrate, tyrosine and valine; however, both the intercept and 

slope differed between time-points. 



95 

 

 

There were 11 metabolites with significant (P < 0.05; Table 3.4) regression coefficient 

between marbling and RC as indicated by the main effect of marbling with non-significant 

interaction. These included 5 metabolites (choline, formate, glycoprotein-acetyls, VLDL and 

lipids) that had a negative correlation with CM (P < 0.05). Six metabolites had a positive 

correlation with CM (P < 0.05; Table 3.4) including anserine, arginine, citrate, glucose, 

methylamine, and propionate). In addition, creatine showed a tendency for a positive 

relationship with marbling (P = 0.06). 

 

Table 3.4 The effect of days in a feedlot (time) on the relative concentration of blood 

metabolites, and the relationship between metabolites and marbling (CM) in Wagyu crossbred 

steers. 
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VLDL: very low-density lipoprotein 

 

The results for the metabolites with significant CM × time interactions are shown in Table 

.5 through the regression coefficient for each time-point. Allantoin and tyrosine showed a 

 Time 
P-

Value 

 

Marbling 

Regression 

Coefficient 

 

 

Metabolite   Day 196   Day 432 

CM P-

value 

CM × 

time 

P-value 

3-Hydroxybutyrate 

log 4.92 ± 0.0132  4.94 ± 0.0132  <0.001 0.0082 ± 0.2133  0.049 <0.001 

Acetate log 4.74 ± 0.025 4.48 ± 0.025 <0.001 0.94 ± 0.429 0.418 0.016 

Acetone 18.02 ± 0.236 22.38 ± 0.235 <0.001 -0.023 ± 0.034 0.497 0.723 

Allantoin 23.37 ± 0.307 19.08 ± 0.307 <0.001 -0.054 ± 0.052 0.044 0.042 

Anserine 262.9 ± 1.71 266.9 ± 1.71 0.024 0.93 ± 0.252 <0.001 0.069 

Arginine 655.1 ± 3.92 657.4 ± 3.91 0.575 1.80 ± 0.57 0.002 0.209 

Aspartate 14.07 ± 0.18  11.52 ± 0.180  <0.001 0.021 ± 0.024 0.378 0.522 

Carnosine 27.11 ± 0.233 25.36 ± 0.232 <0.001 0.0043 ± 0.035 0.898 0.540 

Choline 455.9 ± 3.71 401.3 ± 3.70 <0.001 -2.09 ± 0.549 <0.001 0.749 

Citrate 139.9 ± 1.42 167.7 ± 1.42 <0.001 0.47 ± 0.197 0.017 0.098 

Citrulline 20.42 ± 0.175 21.34 ± 0.175 <0.001 0.026 ± 0.026 0.333 0.099 

Creatine 265.9 ± 2.66 272.3 ± 2.66 0.008 0.77 ± 0.407 0.061 0.288 

Creatinine 36.31 ± 0.416 45.46 ± 0.416 <0.001 0.012 ± 0.062 0.850 0.581 

Dimethyl sulfone 24.49 ± 0.232 25.99 ± 0.231 <0.001 -0.025 ± 0.034 0.465 0.858 

Formate 3.89 ± 0.059  4.92 ± 0.059  <0.001 -0.016 ± 0.008 0.045 0.116 

Glucose 1613.5 ± 10.63 1677.9 ± 10.60 <0.001 5.71 ± 1.573 <0.001 0.073 

Glutamate 21.0 ± 0.196  21.7 ± 0.20 <0.001 -0.016 ± 0.029 0.591 0.273 

Glutamine 251.6 ± 1.93 256.9 ± 1.92 0.002 -0.11 ± 0.296 0.712 0.098 

Glycine 116.9 ± 1.28 130.8 ± 1.28 <0.001 0.0656 ± 0.186 0.727 0.402 

Glycoprotein acetyls 256.4 ± 1.80 236.7 ± 1.79 <0.001 -1.04 ± 0.268 <0.001 0.110 

Histidine 286.5 ± 2.55 273.0 ± 2.53 <0.001 0.92 ± 0.428 0.382 0.007 

Isobutyrate 113.9 ± 0.99 115.4 ± 0.98 0.012 0.43 ± 0.166 0.185 0.003 

Isoleucine 184.8 ± 1.16 173.8 ± 1.16 <0.001 0.007 ± 0.162 0.965 0.286 

Lactate 723.7 ± 17.79 830.8 ± 17.69 <0.001 2.23 ± 2.559 0.388 0.364 

Leucine 156.6 ± 1.25 148.1 ± 1.245 <0.001 0.09 ± 0.18 0.622 0.289 

Lipid 1201.4 ± 6.36 1133.1 ± 6.34 <0.001 -3.82 ± 0.933 <0.001 0.134 

VLDL 807.7 ± 5.40 752.7 ± 5.36 <0.001 -3.53 ± 0.773 <0.001 0.062 

Mannose 4.67 ± 0.091  4.89 ± 0.091 0.089 -0.021 ± 0.011 0.062 0.289 

Methionine 224.9 ± 2.058 245.6 ± 2.06 <0.001 0.09 ± 0.327 0.775 0.075 

Methylamine 29.27 ± 0.493 41.05 ± 0.495 <0.001 0.197 ± 0.069 0.005 0.099 

Methyl histidine 194.5 ± 1.23 209.6 ± 1.22 0.695 0.61 ± 0.208 0.033 0.047 

Phenylalanine 35.77 ± 0.297 38.04 ± 0.296 <0.001 0.009 ± 0.044 0.897 0.054 

Proline 37.81 ± 0.544 31.24 ± 0.543 <0.001 -0.024 ± 0.067 0.719 0.558 

Propionate 17.08 ± 0.156 17.25 ± 0.156 0.352 0.08 ± 0.022 <0.001 0.245 

Serine 17.06 ± 0.231 17.07 ± 0.231 0.965 0.009 ± 0.029 0.754 0.542 

Tyrosine 66.58 ± 0.656 67.52 ± 0.654 0.026 0.057 ± 0.111 0.273 0.010 

Unsaturated Lipid 440.1 ± 1.79 428.6 ± 1.78 <0.001 0.21 ± 0.252 0.401 0.365 

Valine 275.4 ± 2.13 275.8 ± 2.12 0.032 0.73 ± 0.36 0.322 0.026 
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negative association (P < 0.05) with marbling at day 196 but no association at day 432 (P > 

0.05). The metabolites 3-Hydroxybutyrate, acetate, histidine, isobutyrate, methyl histidine and 

valine showed a positive association (P < 0.05) with marbling at day 432 but there was no 

apparent association at day 196 (Table 3.5).  

 

Table 3.5 Regression coefficients of the relative concentration of blood metabolites against 

marbling for metabolites with a significant interaction between marbling and days in a feedlot 

for Wagyu crossbred steers. 

Reg. Coeff. = Regression Coefficient, SE = Standard Error 

 

3.5 Discussion 

The first aim of the present study was to compare the metabolome for individual Wagyu 

crossbred steers at days 196 and 432 in a feedlot. These time-points were 236 days apart, and 

272 and 36 days before animals were slaughtered and carcase traits measured. Previous studies 

sampling cattle at different times for metabolomic analysis had shorter time intervals and were 

undertaken in younger animals earlier in the feedlotting process 7, 16-18. Two important 

differential features of the present study were (1) the long interval between the two sampling 

points and (2) the sampling of older animals that were presumed to be undergoing a greater 

rate of intramuscular fat (IMF) accretion rate because of greater physiological maturity. The 

  Days in a feedlot 

 Day 196 Day 432 

Metabolite Reg. Coeff ± SE P-Value Reg. Coeff ± SE P-Value 

3-Hydroxybutyrate log -0.002 ± 0.002 0.545 0.008 ± 0.002 <0.001 

Acetate log -0.004 ± 0.004 0.384 0.009 ± 0.004 0.030 

Allantoin -0.142 ± 0.053 0.008 -0.054 ± 0.052 0.298 

Histidine -0.022 ± 0.458 0.962 0.920 ± 0.448 0.041 

Isobutyrate -0.031 ± 0.170 0.855 0.429 ± 0.167 0.011 

Phenylalanine -0.010 ± 0.052 0.842 0.055 ± 0.051 0.282 

Methyl histidine 0.156 ± 0.213 0.465 0.608 ± 0.208 0.004 

Tyrosine -0.255 ± 0.1138 0.026 0.055 ± 0.1109 0.622 

Valine -0.114 ± 0.3695 0.758 0.746 ± 0.3614 0.040 
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relative concentrations for 33 out of 38 metabolites were different between days 196 and 432. 

These findings indicated that the blood metabolome in steers changes with time in a feedlot. 

These changes could be due to a number of factors including age, body maturation (e.g. rate of 

IMF accretion), prevailing environment, and diet. Yang, et al. 19 reported differences in the 

relative abundance of 56 plasma metabolites between steers fed a diet with low corn grain (29% 

of DM) and those fed a diet with high corn grain (49% of DM). The changes in diet from day 

196 to 432 in the present study were minor, with the diet fed at day 432 having 3.85% lower 

NDF and 6.0% lower forage. Furthermore, laboratory analysis of diets 3 (196 days sampling) 

and 4 (432 days sampling) indicated no significant differences in the chemical composition. 

The concentration of crude fat of both diets was of interest because it suggests that the 

availability of lipids was similar at both sampling times. Therefore, the changes in the RC of 

metabolites and lipid groups, and the relationships presented between metabolites and marbling 

reflect changes in animal metabolism rather than changes in the diet consumed. The average 

ambient temperature in the sub-tropical climate of the present study also showed only a minor 

difference between time-points (day 196 was 34°C; day 432 was 30°C). Therefore, the changes 

in the plasma metabolome between days 196 and 432 were presumed to be due to age, body 

maturation, and metabolic and physiological status. 

The second aim of the present study was to determine the relationships between the 

metabolome and marbling, and the effect of DOF (time points) on these relationships. Fourteen 

metabolites which were associated with marbling had correlation coefficients of 0.35 to 0.60 

between days 196 and 432 (3-hydroxybutyrate, propionate, 54, choline, anserine, arginine, 

citrate, methylamine, methyl histidine, and lipid groups - lipids, VLDL and glycoprotein-

acetyls). This finding indicated that the ranking of individual animals based on the RC of these 

metabolites was consistent from days 196 to 432. In addition to this, the fact that many of these 

metabolites were associated with marbling encourage potential applications of metabolomics 

to aid in selecting animals for propensity to marble. Other metabolites (creatine, allantoin, 

glutamine, and methionine) had relatively high correlation coefficients (r > 0.60) between days 

196 and 432; however, none of these metabolites were correlated with marbling in the present 

study except for a positive trend for creatine. Arginine, citrate, glucose, and propionate were 

associated with marbling as the main factor. Propionate enters the TCA cycle and is converted 

to glucose in the liver (gluconeogenic pathway), and glucose is then used for fatty acid 

synthesis to be finally used for IMF deposition 2. Furthermore, arginine and citrate can also be 

converted to acetyl-coA in the TCA cycle and later used for fatty acid synthesis 20. The positive 
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relationship between propionate and marbling of the present study was also observed in an 

earlier study with Wagyu crossbred steers with a similar genetic background7. Similar to the 

present study, the earlier study7 also reported positive associations between marbling and the 

RC of creatine, 3-hydroxybutyrate, acetate, histidine, isobutyrate, and valine. The similarities 

between the two studies could be explained by the similar genetic background and comparable 

management and feeding systems. In addition, the consistency of these relationships between 

metabolites and marbling may represent common critical metabolic pathways involved in IMF 

synthesis and deposition. However, more metabolites were associated with marbling in the 

present study compared to the previous sampling younger animals 7. In addition, more 

metabolites were associated with marbling at 432 compared to 196 days (3-hydroxybutyrate, 

acetate, histidine, isobutyrate, methyl histidine, and valine). These results suggest that the 

association between the metabolome and marbling increased with age or degree of maturity. 

However, further studies are required to confirm this hypothesis. 

Glucose showed a positive association with marbling independently of sampling time 

however there was a tendency for a marbling × DOF interaction (P = 0.07) because the slope 

of the regression coefficient tended to be greater at day 196 compared to day 432 (data not 

shown). In the earlier study with Wagyu crossbred steers, glucose showed a linear decrease 

with marbling at day 65, no association at day 119, and positive association at day 163 in the 

feedlot7. The findings from the present and earlier studies could be interpreted to suggest that 

the relationship between glucose and marbling becomes stronger and more positive as steers 

mature and glucose demand for marbling increases. It has been reported that dairy cows can 

respond to increased glucose demand during post-partum by doubling liver gluconeogenesis 

21. Therefore, it is plausible that animals with higher propensity to marble have faster 

gluconeogenic rate producing glucose needed for de novo synthesis of both fatty acids and 

triglycerides as previously reviewed 1,2.  

Similarly, there was a negative association between VLDL and marbling in the present 

study with a tendency for a marbling × time interaction (P = 0.06) because the regression 

coefficient (slope) was lesser at day 196 compared to day 432 (data not shown). In the earlier 

study with Wagyu, the association between lipids and marbling was positive at day 65, not 

significant at day 119, and negative at day 1637. In both studies, therefore, the negative 

association between lipids and marbling became stronger in older animals (i.e., more negative). 

It is possible that the greater rate of IMF accretion as steers mature is achieved, in part, by a 

more rapid uptake of circulating lipids for marbling or IMF deposition, which results in lesser 
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blood concentrations. In contrast, higher marbling seems to be ‘fuelled’ by higher 

concentration of glucose and its precursor propionate in blood. 

Five metabolites (3-hydroxybutyrate, histidine, isobutyrate, methyl histidine and valine) 

showed a positive linear relationship with marbling at day 432 but not day 196. In contrast, the 

metabolites allantoin and tyrosine showed a negative association with marbling at day 196 but 

not day 432. These results further illustrate the complexity of relationships between blood 

metabolites and marbling and as noted above, further studies are needed to gain a deeper 

understanding on the metabolome and marbling in cattle throughout different stages of 

maturity. 

The principal component analysis (PCA) and linear models revealed metabolic patterns 

related to stage of physiological maturity and the relationships with the metabolism of IMF. 

The PCA score plot indicated that PC2 and PC3 accounted for a lower proportion of the 

variance of the dataset compared to PC1. However, PC2 and PC3 seemed more suitable to 

differentiate between DOF based on the proportion of the variance explained in the GLM 

models. Furthermore, PC2 and PC3 showed the highest negative and positive correlation with 

marbling, respectively. Therefore, PC2 and PC3 seem to explain stage of maturity and IMF 

deposition better compared to the rest of the PC’s. Positive values for both PC2 and PC3 were 

found in animals sampled at 196 DOF, and negative values for both PC2 and PC3 at 432 DOF. 

The loading plots highlighted those metabolites with positive loading on PC2 including 

choline, lipid groups (lipids, VLDL and glycoprotein acetyls), acetate, allantoin, and a group 

of amino acids (aspartate, proline, isoleucine, leucine, and carnosine). Furthermore, these 

metabolites showed a significant decrease of the RC from 196 to 432 DOF and choline, lipids 

and VLDL were also negatively associated with marbling in the present experiment. Therefore, 

maturity seems to be associated with a reduction in the circulating concentration of metabolites 

involved in lipid metabolism. Lipids are the primary components of fat tissue in animal bodies 

whereas choline is a precursor for the synthesis of hepatic VLDL formed by choline 

phospholipids22,23. In post-partum dairy cows, choline plays an important role in the export of 

triacylglycerol from the liver promoting phosphatidylcholine synthesis in the Kennedy 

pathway to improve coping with negative energy balance and increase milk production 22,24. 

Therefore, this group of metabolites seem to be important during maturity and fat deposition 

showing lower concentration with higher maturity when IMF deposition is expected to be 

faster. In addition, animals with higher ability to marble show lower concentration of 
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metabolites involved in lipid metabolism. It is plausible that this is a result of faster uptake of 

circulating lipids by body tissues required for fat deposition. 

In contrast to lipid groups, glucose, anserine, and arginine had high negative loading on 

PC2 and positive on PC3. The RC of these metabolites were positively associated with 

marbling and increased with DOF. Therefore, it seems plausible that these metabolites act as 

metabolic fuels for lipid synthesis which are then used for fat deposition as the animal matures 

with age. Thus, animals with higher availability of these metabolic fuels may favour lipid 

synthesis and fat deposition, and these animals seem to uptake circulating lipids at a faster rate 

clearing them from the bloodstream. Furthermore, there were 15 metabolites that increased 

from 196 to 432 DOF, some of these metabolites included molecules that are important in 

glycolysis to produce pyruvate and ATP including creatine, glucose, glutamate, glycine, 

lactate, methionine and phenylalanine25. Pyruvate then enters the TCA cycle, as it is glutamate 

which is involved with the α-Ketoglutarate section of the TCA. Methionine can be converted 

to succinyl-CoA and then used for glycogenesis whereas phenylalanine can enter the fumarate 

part of the TCA25. These findings may suggest that the ability of animals to produce energy via 

both glycolysis and TCA increases with age or maturity, and this may be linked to increased 

synthesis and uptake of lipids. 

 

3.6 Conclusions 

Significant changes in the relative concentration of metabolites and of the metabolic profile 

occurred in crossbred Wagyu steers sampled at two distinct time points (early and late) in the 

feedlotting process. These changes demonstrate the importance of stage of maturity on 

metabolic processes and are likely related to fat metabolism and deposition, at least partially. 

Maturity is accompanied by an increase in the relative concentration of metabolites that 

participate in metabolic pathways for energy production and precursors used for fat acid 

synthesis such as citrate, creatine, creatinine, formate, glucose, glutamate, glycine, lactate, and 

methionine. In contrast, the concentration of circulating metabolites related to lipid metabolism 

and fat deposition decrease with stage of maturity such as choline, lipids, and acetyl groups. 

Several amino acids involved in protein metabolism also decreased with time including proline, 

leucine, isoleucine, histidine, carnosine, allantoin and aspartate. Further to this, Wagyu steers 

with higher marbling at the time of slaughter tend to show greater concentrations of propionate, 

3-hydroxybutyrate, acetate, creatine, glucose, anserine, and arginine but lower blood 
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concentration of lipid groups, choline, and acetyl groups. Sampling time in relation to stage of 

maturity needs to be considered to understand results from metabolic studies and for practical 

applications including the prediction of valuable carcase traits such as marbling. 
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Chapter 4: Predicting intramuscular fat (marbling) in longissimus 

muscle of crossbred Wagyu cattle with animal and feedlot performance 

data, and the plasma metabolome using machine learning 

 

Connolly, S.K, Dona, A.C, Hamblin, D.W, D’Occhio, M.J, González, L.A 2021. Predicting 

intramuscular fat (marbling) in longissimus muscle of crossbred Wagyu cattle with animal and 

feedlot performance data, and the plasma metabolome using machine learning 

 

Overview 

The ability to identify which animals are going to produce a highly marbled carcase using the 

plasma metabolome and routinely recorded animal farm and feedlot data was investigated 

using machine learning methods. The ability to select animals prior to slaughter would increase 

the efficiency of the Wagyu production system. 
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4.1 Aim  

To develop a predictive model for high and low marbling at slaughter in crossbred Wagyu 

cattle with plasma metabolome and animal farm data using machine learning  

4.2 Abstract 

The aim was to incorporate the plasma metabolome with farm-collected data using machine 

learning to predict marbling before slaughter of Wagyu crossbred steers in a feedlot production 

system. Naïve Bayes, classification and decision tree, and random forest predictive modelling, 

was applied to predict marbling across five datasets that included routinely recorded animal 

farm data (sire, wagyu percentage, weaning weight, feedlot BW data, and metabolomics data) 

alone or in combination. Prediction models that used farm and feedlot data yielded accuracy of 

73 and 63%, respectively. The metabolomics datasets with either identified metabolites or all 

metabolic features or peaks resulted in 65 and 63% accuracy, respectively. This was 

independent of whether the metabolome was measured at 196 or 432 days in a feedlot. Using 

both metabolomics datasets measured at 196 and 432 days increased the accuracy to 67% 

without farm or feedlot data. The model, which included animal farm data, feedlot weight data, 

and two metabolomic sampling points, produced an accuracy of 69.6% on the validation 

dataset. The findings indicated that the ability to predict high or low marbling animals using 

animal farm data (sire, Wagyu percentage, weaning weight) is greater than that of the 

metabolomics; however, not all commercial systems record relevant information. The use of 

metabolomic data coupled with farm and feedlot data in prediction models has the potential to 

improve the efficiency of Wagyu production. Individual animals with predicted high carcase 

value can be selected and retained in the production system to full maturity. 

Key words: intramuscular fat, metabolites, body composition, cattle  
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4.3 Introduction 

Wagyu and Wagyu crossbred cattle occupy a market niche in the beef cattle industry because 

of high intramuscular fat (marbling) which confers high eating quality 1. Wagyu carcases that 

are scored high for marbling attract a premium price (score 7 or higher on a scale of 1 to 9). 

However, there is a very high cost of production due to the long period in a feedlot required to 

assimilate sufficient intramuscular fat 2. The ability to predict marbling in Wagyu cattle would 

allow the selection of individual animals either for breeding or meat production. This would 

increase the overall efficiency of feedlot production in Wagyu cattle. In recent studies, the 

plasma metabolome of Wagyu crossbred steers undergoing feedlot production was shown to 

be correlated to an industry-accepted trait of marbling 3-5. 

Given the relationship between the metabolome and marbling in Wagyu steers3,4, it is 

possible that the plasma metabolome could potentially be used to predict the marbling outcome 

of individual animals. This could be combined with other information collected throughout the 

life of the animal such as sire and growth rate to improve the predictions. There is considerable 

interest in the application of machine learning modelling to predict carcase traits in livestock. 

Maltecca, et al. 6 utilised machine learning in crossbred pigs, including microbiome data 

collected at 15 and 22 weeks, to predict loin traits and backfat thickness. The latter authors 

reported a Pearson correlation coefficient between observed and predicted values of 0.30 and 

0.55 for loin traits and backfat thickness, respectively. Shahinfar, et al. 7 examined machine-

learning methods to predict carcase traits of Korean Hanwoo beef cattle with correlations 

between predicted and observed values of 0.95 and 0.60for carcase weight and marbling, 

respectively. The model used to predict carcase traits in Hanwoo beef included phenotypic 

traits such as weights measured at 6, 12, 18 and 24 months of age and 50K SNP data. A study 

in sheep predicted carcase traits using the random forest algorithm from lifetime phenotypic 

traits with correlation coefficients between the actual and predicted values of 0.88 and 0.56 for 
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carcase weight and intramuscular fat, respectively8. Each of the above studies indicated that 

the application of machine learning to predict marbling of Wagyu crossbred steers is promising 

and needs to be evaluated. The application of machine learning in animal production could 

potentially result in the evaluation of performance and detection of health and welfare issues 

in real time 9. This approach could enable decisions to be made quickly and efficiently resulting 

in production improvements. There are significant knowledge gaps which machine learning is 

reducing due to the ability to combine multiple data streams such as genomics, transcriptomics, 

metabolomics and phenotypic information 10. Machine learning methods have been previously 

applied to but not limited to dairy cattle to predict the insemination outcomes 11, the survival 

of second lactation cows 12, and heat stress in dairy cows 13. Grzesiak and Zaborski 14 illustrate 

there are multiple ways of applying machine learning methods such as classification and 

regression trees, interactive classification trees, naïve Bayes classifier, artificial neural 

networks, and support vector machines to animal breeding.  

The ability to determine carcase quality traits of an animal such as marbling prior to 

slaughter is currently difficult due to the phenotypic measurement of the trait not being 

measured accurately until slaughter. Previous studies published by Connolly, et al. 3,4 indicated 

that there is a relationship between plasma metabolites and carcase traits, and that time in the 

feedlot can affect the metabolome. However, the ability of metabolomic information to predict 

marbling has not been published.  

In addition to novel datasets from metabolomics, data routinely recorded by beef cattle 

producers could also be used to improve the prediction of marbling from traits. This includes 

age, pedigree (sire and dam), breed percentages in crossbreeding programs, and on-farm and 

interim feedlot weights. However, metabolomics could be useful to predict carcase traits in 

Wagyu cattle when animal farm data for the animals is not available such as when feedlots 
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purchase store steers where the sire and dam, and weights from birth are unknown. Therefore, 

plasma metabolomics could enable selection decisions to be made quicker and more efficiently.  

The objective of the present study was to utilise a machine learning technique to develop 

predictive models of marbling based on phenotypic data collected on farm and metabolomic 

data from Wagyu crossbred steers. The present study applied naïve bayes, decision trees, and 

random forest classifiers, to predict marbling prior to slaughter from routinely recorded animal 

farm data from birth, feedlot BWs, and metabolomics data. 

4.4 Materials and Methods 

The study was approved by The University of Sydney Animal Ethics Committee (Approval 

# 1124). 

4.4.1 Animals and management 

The study utilized 156 Wagyu (Bos taurus) crossbred steers that were classified as high 

marbling if marbling score was above 6 at slaughter (scale 1-9) or low marbling otherwise. 

Descriptive statistics are shown in Table 4.1 for each marbling group. All animals were born 

from artificial insemination and sire identification was recorded after the calves were tagged at 

birth. The breed of dams was Shorthorn (n = 77), Angus (n = 17), Brahman (n = 52), and dairy 

(n = 10), and the proportion of Wagyu (F1, F2, F3 and F4) in the study progeny was calculated. 

Calves were raised with their dams on pasture until 191 ± 29 days old, weighed and weaned, 

and then grazed together as a cohort until a feedlot entry weight of approximately 350 kg. The 

steers were fed in a commercial feedlot for 468 days with ad-libitum feed and water. During 

the first 84 DOF at the feedlot, the steers were weighed every 14 days. The first weight was at 

day 0 for induction, 30, 44, 58, 72, 86, and 100 days. The time period average daily weight 

gain (ADG; kg/d) calculated was calculated using the weights measured. Animals were 

slaughtered after 468 DOF and carcase data was recorded by an accredited Aus-Meat15 assessor 
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and marbling of the muscle Longissimus thoracis et lumborum was measured objectively using 

a hyperspectral camera (HK-333 camera; Hayasaka Rikoh Co. Ltd., Sapporo, Japan)5.  

4.4.2 Plasma metabolome 

Plasma samples for metabolome analysis were obtained when the steers were 812 ± 124 

days old and at day 196 on feed (early feedlot period). A second plasma sample was collected 

when the animals were 1048 ± 123 days old and at day 432 on feed (late feedlot period). The 

metabolome profiles were generated using a Bruker Advanced II 600 MHz spectrometer as 

previously described3. The metabolite data was transferred into Matlab 7.0 software 

(Mathworks, Narick, MA) where each individual spectra was aligned, automatically phased, 

baseline corrected, and referenced to the α-C1H-Glucose doublet at 5.233 ppm also as 

previously described3. Metabolite peaks were identified using the spectral library in 

Chenomx® NMR Suite Professional (Chenomx Inc., Edmonton, AB, Canada) as well as 

published literature16. There were 290 peaks or clusters mapped within the dataset and 38 

specific metabolites were identified (Table 4.2). 

4.4.3 Machine learning modelling    

Statistical analyses were performed on the dataset of phenotypic data in R Core Team 

(2020)17 using the caret package for the naïve bayes, decision tree, and random forest methods 

18. The naïve Bayes method is based on the Bayesian techniques that assumes that the presence 

of a specific feature is unrelated to the presence of any other features 12. The decision tree 1 SE 

is a classifier decision tree used to predict a qualitative response using the standard error 

method to prune the tree. The random forest algorithm is a supervised learning method that 

consists of a combination of trees to determine the most efficient predictors 19.  

The dataset was randomly split into training (70%) for algorithm development and 

validation (30%) to evaluate model performance. Animals with marbling < 25.7 % or marbling 
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score 6 were considered ‘low’ (n = 59) and animals above this value were considered to have 

high marbling (n = 97). Models were developed to predict a two-class marbling outcome from 

datasets containing the predictor variables from different sources or datasets as described in 

Table 4.1. Models were optimised or ‘tuned’ based on the highest value for receiver operating 

curve (ROC), and resampling done with repeated cross-validation with 5 folds and 3 repeats. 

The predictors included three datasets from variables collected on-farm before entry to the 

feedlot (dataset 1), data collected in the feedlot (dataset 2), identified metabolites (dataset 3), 

all metabolite features (dataset 4), and all variables available from the combination of 

previously mentioned datasets (dataset 5; Table 4.1).  

The accuracy of the prediction models were evaluated by the following performance metrics 

on the validation dataset only where the high marbling group is the positive class: accuracy, 

sensitivity, specificity, area under the curve (AUC), and precision 20. The accuracy indicates 

the proportion of data points or animals correctly classified in the corresponding marbling 

group, the sensitivity is the proportion of true positives the model is predicting correctly, and 

the specificity is the proportion of true negatives the model is correctly classifying. The AUC 

indicates the overall performance of the model and shows how capable the model is at 

distinguishing between classes whereas the precision indicates the ability of the model to return 

the correct result rather than the incorrect result 21.  

 

  



112 

 

 

Table 4.1. Datasets and predictor variables in each used by the naïve bayes, decision tree 1SE, 

and random forest classifiers to predict marbling from crossbred Wagyu steers. 

 

The analysis included two datasets from the animal data one collected from the farm and one 

from the feedlot. There were also three series of databases assembled from the metabolomic 

analyses of the plasma samples collected at 196 and 432 DOF as described in Table 4.1. In the 

first instance, a metabolite dataset (dataset 3) and an NMR features data (dataset 4) were 

independently built from the 196 DOF metabolomic analysis. An ‘all variables’ dataset (dataset 

Dataset Variables included in dataset 

Animal Farm Dataset (1) Wagyu percentage, weaning weight, and sire. 

Feedlot Dataset (2) Age at feedlot induction, body weight at 0 (induction), 30, 44, 58, 

72, 86, and 100 DOF; weight gain at 30, 44, 58, 72, 86, and 100 

DOF, and overall ADG from induction to slaughter. 

Identified Metabolites 

Dataset (3) 

Formate, Allantoin, Mannose, Creatinine, Serine, Anserine, 

Glycine, Choline, Dimethyl sulfone, Citrulline, Citrate, 

Carnosine, Aspartate, Methylamine, Acetone, Glutamate, Acetate, 

Propionate, 3-Hydroxybutyrate, Arginine, Citrate, Creatine, 

Glucose, Glutamine, Glycoprotein acetyls, Histidine, Isobutyrate, 

Isoleucine, Lactate, Leucine, Lipid, Lipid VLDL, Unsaturated 

Lipid, Methionine, Methylhistidine, Phenylalanine, Proline, 

Tyrosine, Valine 

All Metabolomics Features 

Dataset (4) 

Relative abundance of all 290 features or peaks found in the NMR 

spectra using Standard Recoupling of Variables 

All Variables Available (5) All variables in dataset 1, 2, 3 and 4 
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5) was then compiled by combining the animal data, the feedlot data, the 196 DOF metabolite 

data, and corresponding NMR features data (Table 4.1). Thus, three datasets unique to 196 

DOF were available as inputs to machine learning. 

Likewise, a second series of three datasets unique to the 432 DOF plasma metabolomic 

analyses were compiled. Therefore ‘all variables’ dataset (dataset 5) contained the 432 DOF 

metabolite data and NMR features data along with the animal data and feedlot data. Finally, a 

third series of three datasets, were generated. These datasets merged the data from the from the 

two time points, such that the metabolite dataset contained the combined metabolite data from 

the 196 and 432 DOF plasma samples; similarly, the NMR features dataset combined the NMR 

features data from both time points. The ‘all variables’ dataset 5 then contained the animal data, 

feedlot data, and the combined 196 and 432 DOF metabolite and NMR features data. 

 

4.5 Results 

Table 4.2 shows the descriptive statistics of the Aus-meat marbling and camera marbling. 

Interestingly, Aus-meat marbling score showed greater CV between animals compared to 

camera marbling, whereas feedlot induction weight and HSCW showed the lowest CV.  
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Table 4.2: Descriptive statistics of Wagyu crossbred steers split into two classes of high (n = 

97) and low (n = 59 ) marbling including the min, mean, max, standard error and coefficient of 

variation .  

 

Table 4.3 shows the results of model performance metrics for the naïve bayes, decision tree 

1SE and random forest models (accuracy, sensitivity, specificity, AUC, and precision) for the 

datasets 1 and 2 of animal farm data and feedlot data. The greatest accuracy was using the 

random forest and decision tree 1 SE for dataset 1 as shown below. The animal farm data 

outperformed the feedlot data in accuracy, sensitivity, AUC, and precision when the prediction 

of marbling into two classes high and low. Random forest modelling performed best with 

Variable Minimum Mean Maximum Standard 

Error 

Coefficient 

of Variation 

High marbling group      

   Wagyu percent (%) 50.0 76.8 100.0 1.63 20.85 

   Age At Induction (Days) 460 654 1041 12.32 18.57 

   Feedlot Induction Weight (kg) 246 338 430 3.01 8.76 

   ADG Feedlot (kg) 1.03 1.39 1.98 0.019 13.34 

   Aus-meat Marble Score 4 7.62 9.00 0.162 20.96 

   Camera Marbling (%) 25.7 31.39 44.50 0.402 12.62 

   HSCW (kg) 323.5 425.4 542.0 3.814 8.83 

Low marbling group 

   Wagyu percent (%) 50 64.19 96.88 2.09 25.02 

   Age At Induction (Days) 465 547 1,005 12.9 18.05 

   Feedlot Induction Weight (kg) 262 323 370 3.19 7.59 

   ADG Feedlot (kg) 0.98 1.44 1.86 0.029 15.22 

   Aus-meat Marble Score 2 5.05 9.00 0.207 31.50 

   Camera Marbling (%) 16.3 21.86 25.60 0.345 12.11 

   HSCW (kg) 323 431.9 531.5 5.74 10.20 
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Animal farm dataset 1 compared to the Naïve Bayes and decision trees. In contrast, Naïve 

Bayes performed best with Feedlot dataset 2 although the specificity was only 0.41 (Table 4.3).  

 

Table 4.3: Performance of naïve bayes, decision tree 1 SE and random forest models to classify 

crossbred Wagyu steers into low or high marbling using animal farm data (dataset 1), feedlot 

data (dataset 2).  

  Accuracy Sensitivity Specificity AUC* Precision 

Animal farm dataset 1      

   Naïve Bayes 0.622 1.000 0.000 0.776 0.630 

   Decision Tree 1SE 0.739 0.793 0.647 0.749 0.793 

   Random Forest 0.739 0.759 0.706 0.785 0.815 

Feedlot Dataset 2 

   Naïve Bayes 0.630 0.759 0.412 0.637 0.688 

   Decision Tree 1SE 0.609 0.793 0.294 0.465 0.657 

   Random Forest 0.587 0.793 0.235 0.577 0.639 

* Area under the curve 

Table 4.4 shows the classification results for the three datasets 3, 4 and 5 which included 

identified metabolites, all metabolite features, and all variables available at the first sample 

point for metabolomics at 196 DOF. The most accurate model was using the decision tree 1SE 

on dataset 5 which is a combination of all the available variables, however there were small 

differences in accuracy between the three datasets. The naïve Bayes model had the second 

highest accuracy for dataset 4. The greatest sensitivity and precision were produced using the 

naïve Bayes model in dataset 5 which was the combination of all variables. Sensitivity was 

high (>0.72) with all datasets and machine learning models, but specificity was low (<0.47; 

Table 4.4).  
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Table 4.4: Performance of naïve bayes, decision tree 1 SE and random forest models to classify 

crossbred Wagyu steers into low or high marbling using 36 identified plasma metabolites 

(dataset 3), all features or peaks from plasma metabolomics (dataset 4), and all variables 

available (dataset 5) using metabolomic data sampled at 196 days on feed. 

  Accuracy Sensitivity Specificity AUC* Precision 

Metabolites Dataset 3   

   Naïve Bayes 0.565 0.862 0.059 0.604 0.610 

   Decision Tree 1SE 0.500 0.621 0.294 0.511 0.600 

   Random Forest 0.609 0.793 0.294 0.618 0.657 

Metabolomic features Dataset 4 

   Naïve Bayes 0.630 0.724 0.471 0.598 0.700 

   Decision Tree 1SE 0.565 0.621 0.471 0.573 0.667 

   Random Forest 0.609 0.862 0.176 0.583 0.641 

All data Dataset 5 

   Naïve Bayes 0.587 0.931 0.000 0.631 0.614 

   Decision Tree 1SE 0.652 0.828 0.353 0.559 0.686 

   Random Forest 0.609 0.931 0.059 0.681 0.628 

* Area under the curve 

 

The results shown in table 4.5 includes model performance using datasets 3, 4 and 5 when 

blood was sampled at 432 DOF for metabolomics. The most accurate prediction model was 

using the decision tree 1SE and random forest on dataset 5, which included all available 

variables. The highest sensitivity was produced using random forest on dataset 4 and the 

highest precision was the naïve Bayes on dataset 3, which only included the 36 identified 

metabolites. Specificity of the model was below 50% except for naïve Bayes with Dataset 3 

and decision trees with Dataset 5.  
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Table 4.5: Performance machine learning models to classify crossbred Wagyu steers into low 

or high marbling using 36 identified plasma metabolites (dataset 3), all features or peaks from 

plasma metabolomics (dataset 4), and all variables available (dataset 5) using metabolomic 

data sampled at 432 days on feed. 

  Accuracy Sensitivity Specificity AUC* Precision 

Metabolites Dataset 3      

   Naïve Bayes 0.630 0.552 0.765 0.730 0.800 

   Decision Tree 1SE 0.587 0.724 0.353 0.688 0.656 

   Random Forest 0.652 0.897 0.235 0.735 0.667 

Metabolic features Dataset 4 

   Naïve Bayes 0.587 0.586 0.588 0.644 0.708 

   Decision Tree 1SE 0.587 0.586 0.588 0.632 0.708 

   Random Forest 0.652 0.931 0.176 0.736 0.659 

All data Dataset 5 

   Naïve Bayes 0.652 0.759 0.471 0.694 0.710 

   Decision Tree 1SE 0.674 0.690 0.647 0.708 0.769 

   Random Forest 0.674 0.897 0.294 0.732 0.684 

* Area under the curve 

 

Combining both metabolomics datasets measured at 196 and 432 DOF to be used as predictors 

yielded the highest accuracy using the naïve Bayes and decision tree 1SE for dataset 5 which 

included all available variables at both sample points of the feedlotting process. However, this 

latter model had low specificity (59%) and thus naïve Bayes with dataset 3 showed prediction 

with all performance statistics above 65% (Table 4.6).   
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Table 4.6: Performance of machine learning models to classify crossbred Wagyu steers into 

low or high marbling using 36 identified plasma metabolites (dataset 3), all features or peaks 

from plasma metabolomics (dataset 4), and all variables available (dataset 5) using both 

metabolomic data sampled at 196 and 432 days on feed. 

 Accuracy Sensitivity Specificity AUC* Precision 

Metabolites Dataset 3      

  Naïve Bayes 0.674 0.655 0.706 0.684 0.792 

  Decision Tree 1SE 0.609 0.586 0.647 0.647 0.739 

  Random Forest 0.652 0.897 0.235 0.771 0.667 

Metabolic features Dataset 4 

  Naïve Bayes 0.674 0.793 0.471 0.694 0.719 

  Decision Tree 1SE 0.543 0.655 0.353 0.496 0.633 

  Random Forest 0.652 1.000 0.059 0.685 0.644 

All data Dataset 5 

  Naïve Bayes 0.696 0.828 0.471 0.333 0.727 

  Decision Tree 1SE 0.696 0.759 0.588 0.625 0.759 

  Random Forest 0.674 0.931 0.235 0.704 0.675 

* Area under the curve 

4.6 Discussion 

The first analysis of the present study examined the accuracy of animal farm data and feedlot 

data that was collected on farm prior to feedlot entry and then induction and BWs during the 

feedlotting period. This analysis with dataset 1 and 2 returned the best performance compared 

to all other datasets 2, 3 4, and 5 with all statistics greater than 0.70 using random forest or 

greater than 0.65 for decision trees. Dataset 1 included sire, wagyu percentage, and weaning 

weight, which demonstrate the large influence of genetics on marbling and the importance to 

predict this trait.  It is important to note that the dataset of the present study contained 62% of 

steers with high marbling and, therefore, the higher the accuracy for the prediction model the 

more accurate the model is therefore the higher the accuracy the better. Although there is a 

trade-off between sensitivity and specificity, accuracy above 0.62 was achieved with many 

datasets in the present study suggesting the models could improve, the industry practice of 



119 

 

 

feeding all Wagyu steers which results in sensitivity of 1 and specificity of 0. The fact that 

many classification models and datasets had high sensitivity and modest specificity suggest 

this approach could help to identify those animals, which will not achieve the desired marbling. 

Nevertheless, it is important to note that other measurement methods of intramuscular fat in 

live animals such as ultrasound could potentially yield similar accuracy in a more practical and 

cost-effective way. However, no studies attempted to predict carcase marbling from ultrasound 

images over 265 days before slaughter as done in the present study. 

The ability to select cattle based on their marbling potential early in the feedlot process is 

currently difficult and there are other methods being trialled to enable selection of animals prior 

to slaughter. de las Heras-Saldana, et al. 22 evaluated the use of whole genome sequence 

information to improve the accuracies of genomic prediction in Hanwoo cattle for the traits 

backfat thickness, carcase weight, eye muscle area, and marbling score. The latter authors used 

a database of 13,717 animals with carcase phenotypes and imputed sequence genotypes as there 

were no pedigrees available due to the data being collected commercially across multiple years 

and slaughterhouses. The data was then segregated into two datasets with one used for 

independent GWAS discovery and the other for validation of prediction. The results indicated 

accuracies of 0.50, 0.47, 0.58 and 0.47 for eye muscle, backfat thickness, carcase weight, and 

marbling score, respectively 22. These values are lower than those obtained in the present study 

using only metabolomics data although the calculation of accuracy in the latter study differs 

significantly from the present study. Therefore, the models developed and evaluated in the 

present study to predict marbling could help to improve the current production systems similar 

to those achieved with genomic information.  

Both metabolomic datasets 3 and 4 collected at 196 and 432 DOF showed lower accuracy 

compared to the dataset containing the animal farm data only. However, the difference between 
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the precision for each of the different datasets was small. The ability to select cattle at 32 days 

prior to slaughter (432 DOF) would not improve the production system greatly as the animals 

have already consumed a large portion of the feed required. Previous results demonstrated that 

the metabolome of Wagyu cattle was affected by DOF and correlated to the degree of maturity 

and amount of fat deposition 3,4. Thus, we hypothesized that using metabolomics information 

from samples obtained later in the feedlot could improve the prediction of marbling. This 

hypothesis was correct although the differences in accuracy were very small compared to 196 

DOF. Using both metabolomics datasets from 196 and 432 DOF yielded improved accuracy 

compared to either dataset independently, or to feedlot data. This suggested that one sampling 

either early or late in the feedlot does not affect the accuracy of the predictions although the 

combination of both blood sampling points produced a small improvement.  

Shahinfar, et al. 7 have shown that it is effective to use machine learning to predict carcase 

traits such as marble score and carcase weight in Hanwoo cattle. The study examined four 

machine learning models including multilayer perceptron, model tree, random forest and 

support vector machines using 52,924 SNPs as well as traits such as live weight, ultrasound, 

biophysical measurements, sire EBV’s, and average daily gain. The support vector machines 

returned accuracy of 0.94 for carcase weight and 0.64 for marbling. Similarly, Lee, et al. 23 

undertook a study in Hanwoo cattle to develop a model using body size measurements shortly 

before slaughter such as cold carcase weight, backfat thickness, EMA, side length, forequarter 

length, hindquarter length, cervical vertebrae length, thoracic vertebrae length and many more. 

The objective was to estimate the carcase weight of 132 head using three different modelling 

approaches of multiple regression analysis, partial least squares, and neural networks. The 

neural networks model produced the greatest accuracy with an R2 of 0.92 from testing the 

models.  
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The ability to select wagyu cattle when entering the feedlot with no previously measured 

animal farm data available using metabolomics could enable commercial feedlots to become 

more efficient. Currently, some large-scale producers of feeder cattle are not recording specific 

traits such as weaning weights, sire, and dam identification. The classification of animals into 

high and low marbling groups in the present study using feedlot induction weight and multiple 

weights throughout the feedlot process is not as accurate as dataset 1 using animal farm data 

such as sire, Wagyu percentage, and weaning weight. Kalaiselvi, et al. 24 conducted a review 

of metabolomics in livestock and have shown findings to suggest metabolomics combined with 

genomics could enable a more comprehensive system understanding. The present study is a 

step towards this application and demonstrates that metabolomics information could assist in 

improving the accuracy of genomic predictions. Li, et al. 25 highlighted the ability to integrate 

metabolomics and genomics into animal breeding. Utilising multiple levels of data, the 

interaction between plasma metabolites and genes or genetic variants can be understood 

further. Li, et al. 25 explored if higher heritability was available for plasma metabolites because 

markers with higher heritability for specific traits could enable directional selection in favour 

of the concentration of that specific metabolite. The inclusion of feedlot recorded data and 

metabolomics in Wagyu cattle could enable better selection of steers that are going to produce 

a superior carcase. 

 

4.7 Conclusion 

Naïve bayes, decision tree, and random forest machine learning modelling is useful to predict 

high and low marbling Wagyu crossbred steers. The accuracy of the predictions increases with 

the integration of animal farm data, feedlot weight data, and metabolomics data measured early 

and late in the feedlot. Metabolomics data later in the feedlot seems to improve the prediction 
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models to a greater extent than earlier samples. Pedigree and Wagyu content seem the most 

important information to predict marbling in Wagyu crossbred cattle. 
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Chapter 5: Effect of adjusting feed efficiency for carcase fat on the 

relationship with the plasma metabolome in Wagyu crossbred steers  

 

Connolly, S.K, Dona, A.C, Hamblin, D.W, D’Occhio, M.J, González, L.A 2021. Effect of 

adjusting feed efficiency for carcase fat on the relationship with the plasma metabolome in 

Wagyu crossbred steers 

 

Overview 

This chapter examined the relationship between the plasma metabolome and various measures 

of feed efficiency adjusted or not for carcase fat. The relationship between RFI and carcase fat 

has been shown to be positive which is not desirable in Wagyu cattle because intramuscular fat 

is a very important trait. Potential applications include biomarker discovery for the selection of 

efficient animals with desirable carcase traits.  
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5.1 Abstract 

The aim of the present study was to evaluate the relationship between the plasma 

metabolome and Residual Feed Intake (RFI) of crossbred Wagyu steers adjusting for carcase 

fat such as intramuscular fat. A secondary objective was to determine if these relationships 

were also found later in the feedlot. Blood samples were collected from 140 steers at 78 and 

313 days on feed (DOF). The RFI was adjusted for subcutaneous and intramuscular fat 

measured at slaughter. 1H-NMR spectroscopy identified 36 metabolites in the plasma samples 

with methionine, phenylalanine, serine, and histidine being negatively correlated (P < 0.05) 

with all measures of RFI at 78 DOF whereas glucose only reached significance when RFI was 

adjusted for P8 fat and intramuscular fat (P < 0.05).  At 313 DOF, methionine and 

phenylalanine were the only metabolites that were also correlated with RFI (P < 0.05) but 

metabolites from lipid metabolism appeared with positive correlations with RFI (P < 0.05) 

including choline, glycoprotein acetyls, and lipids. Alternative measures of feed efficiency 

such as residual gain and gain to feed showed stronger and more correlations with plasma 

metabolites (P < 0.05). In conclusion, blood biomarkers of feed efficiency are not severely 

affected by the adjustment of RFI for carcase fat, but alternative measures have a larger effect. 

There is a shift in the correlation between metabolites and feed efficiency from a larger 

influence of protein to lipid metabolism as the animals mature. This information could help 

understanding the underlying metabolic process of tissue deposition and assist with genetic 

selection for RFI while avoiding undesirable effects on economically important carcase 

attributes such as intramuscular fat in Wagyu feedlot steers.  

 

5.2 Introduction 

Wagyu beef occupies premium niche markets because of the eating quality obtained from 

the amount and composition of intramuscular fat (IMF) 1. However, Wagyu production is 

costly as animals require a relatively long period in a feedlot to achieve a high-value carcase2. 

In addition, the cost of production in a feedlot increases with time because feed efficiency 

declines as cattle deposit additional fat 1. Improving feed efficiency is, therefore, central to the 

optimization of Wagyu beef production. 

A common measure of feed efficiency is the gain to feed ratio (GF) which is the ratio of 

body growth to dry matter intake (DMI) 3. Another measure of feed efficiency is residual feed 
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intake (RFI), calculated as the difference between actual intake and the expected intake for BW 

and growth rate 4. The measurement of RFI is expensive and impractical on a commercial scale 

5. Hence, the ability to predict RFI using metabolic biomarkers would have large commercial 

benefits. An antagonistic relationship exists between RFI and body fat 6,7 and it is critical that 

RFI is corrected for carcase fat. Duff, et al. 8 proposed the use of RFI whilst accounting for 

marbling in beef breeding programs. The RFI can be adjusted to consider multiple factors such 

as average daily gain (ADG) and mean metabolic body weight (MMBW), and could also 

include marbling, subcutaneous P8 fat, and rib fat.  

McGee, et al. 9 examined the relationship of feed efficiency to growth, and marbling in 

Wagyu bulls. RFI was negatively correlated with marbling measured by ultrasound on day 0 

and 70, instead of actual carcase marbling. The negative relationship with MARBLING 

indicates that the selection of cattle for low RFI could affect carcase quality. The McGee, et al. 

9 study highlighted the need for further studies on RFI in Wagyu cattle to improve the efficiency 

of production. The selection of efficient cattle whilst maintaining distinctive carcase attributes 

is an important goal in Wagyu beef production. 

The relationship of the blood and tissue metabolomes to RFI has attracted recent interest in 

both European (Bos taurus) and Zebu (Bos indicus) beef cattle 10. In Angus crossbred beef 

steers (Bos taurus), three metabolites (carnitine, creatine, hippurate) explained 32% of the 

genetic variation in RFI and 11 metabolites explained up to 52% of the genetic variation in RFI 

9. The ability to use the metabolome to reliably predict RFI has major application, as it would 

remove the need to measure individual feed intake in cattle. Hence, the present study looked at 

the relationship of the plasma metabolome to RFI in Wagyu crossbred steers maintained in a 

feedlot for 421 days. Previous studies had shown that different groups of metabolites were 

related to RFI 11 and carcase traits 12 at different times before slaughter. In the present study, 

the metabolome was characterized after 78 days in a feedlot when steers were undergoing RFI 

measurement, and at 313 days, which was 108 days before slaughter. The unique feature of the 

present study was that the metabolome was related to RFI adjusted for carcase traits such as 

marbling, rib fat and subcutaneous P8 fat and, additionally, residual gain and gain to feed. 
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 5.3 Materials and Methods 

The present study had approval from the institutional animal ethics committee of The 

University of Sydney (approval #1125).  

5.3.1 Animals and management 

The present study utilized 140 crossbred Wagyu steers with Brahman, Shorthorn and Angus 

the predominant dam breeds mated to Wagyu bulls. The animals were housed in a commercial 

feedlot and fed to allow for ad-libitum consumption of four diets for a total of 421 days (Table 

5.1). The diet was changed on day 4, 10 and 93 after induction. For the first 28 days animals 

were acclimatized to electronic feeders (GrowSafe, Calgary, Alberta, Canada). Feed intake was 

measured from day 29 to 184 and animals were weighed at the start and end of this period. At 

day 185, the steers were transferred to a conventional feedlot pen with standard in-line concrete 

feed bunks and open dirt floor. Animals were weighed fortnightly for the remainder of the 

study. Feed was provided twice daily before 10:00 AM and after 3:00 PM. A timeline of events 

is shown in Figure 5.1. Complete sets of data (metabolome, carcase, marbling, RFI) were 

available for 123 steers. 

 

5.3.2 Blood sampling 

Blood samples were obtained at day 78 when the steers were undergoing feed intake 

measurement and at day 313. For blood sampling, steers were moved to a central handling 

facility at 1000h and blood was collected between 11:00 and 14:15 h. An 18G needle and 

evacuated lithium heparin tube was used (Vacutainer BD, Becton Dickinson, Frankland Lakes, 

NJ) to obtain blood. Samples were kept on ice for up to 20 min and centrifuged at 10,000 x g 

for 15 min. Plasma was stored at -80 0C until analysis. 
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Figure 5.1: Timeline of events throughout experimental days since the start of the trial 

with Wagyu crossbred steers to measure the plasma metabolome. 

 

Table 5.1: Diet ingredients and composition. 

Feedlot Ration 1

Feedlot Ration 2
Feedlot Ration 3

Growsafe Trial Start
Interim Period 2 Weight

Interim Period 3 Weight
Interim Period 4 Weight

Blood Sample 1 Taken

Interim Period 5 Weight

Feedlot Ration 4

Interim Period 6 Weight
Interim Period 7 Weight

Interim Period 8 Weight
Interim Period 9 Weight

Grosafe Trial Finish

Blood Sample 2 Taken
Feedlot Exit

Day 1Day 4 Day
10

Day
29

Day
43

Day
57

Day
71

Day
79

Day
85

Day
93

Day
99

Day
113

Day
127

Day
141

Day
183

Day
314

Day
421

Ingredient Unit Diet 1 Diet 2 Diet 3 Diet 4 

Steam Flaked Barley % as fed 21.5 28.5 37.5 47.0 

Steam Flaked Wheat % as fed 21.0 22.5 14.5 19.0 

Finisher Supplement % as fed 5.0 5.2 0.0 1.7 

Growth Supplement % as fed 0.0 0.0 5.0 3.5 

Molasses % as fed 12.0 10.1 4.8 5.0 

Vegetable Oil % as fed 0.0 1.2 1.4 1.5 

Brewers Sweet Grain % as fed 0.0 0.0 15.0 8.0 

Sunflower Meal % as fed 5.5 5.0 1.5 0.0 

Corn Silage % as fed 12.0 12.0 12.8 9.8 

Barley Straw % as fed 12.0 9.5 7.5 4.5 

Lucerne Hay % as fed 11.0 6.0 0.0 0.0 

Chemical Composition      

Dry Matter % - - 94.8 95.2 

Moisture % - - 5.2 4.9 

Acid Detergent Fibre % DM - - 9.0 7.0 

Dry Matter Digestibility % DM - - 81.0 85.0 

Inorganic Ash % DM - - 6.0 6.0 

Organic Matter % DM - - 94.0 94.0 

Crude Fat % DM - - 4.0 4.1 

Crude Protein % DM 14.1* 13.8* 12.5 12.4 

Neutral Detergent Fibre % DM 29.3* 25.6* 20.0 17.0 

Metabolizable Energy MJ/kg DM 10.9* 11.6* 13.0 13.5 

Ionophore (monesin) ppm 21.3* 22.2* 23.4* 23.9* 

Net Energy of Gain MJ/kg DM 4.4* 4.9* 5.5* 6.0* 

Net Energy of Maintenance MJ/kg DM 7.0* 7.6* 8.3* 8.9* 
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*Values are estimates from feed composition tables of the ingredients making up the diet.  

5.3.3 Carcase data 

The grading of carcases was undertaken by accredited assessors using several methods 

including Aus-meat 11 and Meat Standards Australia (MSA) 12.  Marbling percentage was 

objectively measured using a hyperspectral camera (camera marbling, CM) (HK-333 camera; 

Hayasaka Rikoh Co. Ltd., Sapporo, Japan) 13. The Aus-Meat grading measures marbling scores 

from 0 to 9+ and the MSA marbling score measures from 100 to 1100.  

5.3.4 Metabolite profiling 

Plasma samples were processed and analysed for metabolites in accordance with the 

protocol published in Dona, et al. 14 and using the exact method previously published in 

Connolly, et al. 15. Spectra obtained from NMR (Bruker Advance III 600 MHz spectrometer 

equipped with a 5-mm TCI cryoprobe) were imported into Matlab 7.0 software for alignment, 

normalisation and automatic phasing, baseline correcting, and referencing of the dataset to the 

α-C1H-Glucose doublet (5.233 ppm) 16. The residual water was removed and PCA was also 

undertaken to ensure the quality control samples were clustering as documented in Connolly, 

et al. 15. The final step of the metabolite processing was to undertake statistical recoupling of 

variables (SRV) to determine the clusters or bucketing of the NMR spectra. The raw spectra 

was also imported in parallel into Chenomx® for the assignment of the metabolite name to the 

clusters using the spectral library of Chenomx® NMR Suite Professional (Chenomx Inc., 

Edmonton, AB, Canada) as well as using published literature and the livestock metabolite 

database 16-18.  

5.3.5 Statistical analyses 

Statistical analysis was undertaken using the statistical program SAS 9.4 (SAS Institute Inc., 

Cary, New Jersey, USA) with multiple databases that were merged including carcase data, feed 

intake data, phenotypic records, and metabolite data. Once the database was merged the RFI 

was calculated using the animals with complete records (n = 123). The RFI was then calculated 

as the residual from regressing observed feed intake against mid-trial BW0.75 and ADG with 

further calculations adding P8 fat thickness (RFI P8), rib fat thickness (RFI Rib Fat), Aus-Meat 

marbling score (RFI Aus-meat), MSA marbling score (RFI IMF MSA), or camera marbling (RFI 

Camera Marbling). In addition, residual gain (RG) was calculated as the residual from regressing 
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ADG against feed intake and BW and Gain to Feed (GF) ratio diving average feed intake by 

ADG.  

The RG indicates the difference between the actual gain and the predicted gain based on 

BW, intake and composition, where a positive RG indicates the animal gained more than the 

predicted values from the intake and BW 19. The FCR indicates the ratio of dry matter intake 

to live weight gain; a lower FCR value is desirable if selection is for efficient animals as it 

indicates less feed is required per kg gained19. The GF ratio includes the average dry matter 

intake (kg) and the metabolic BW. 

Pearson correlation coefficients were calculated for each trait in relation to all metabolites 

identified in Chenomx® and the RFI adjusted variables for sampling point 1 (78 DOF) and 

sampling point 2 (313 DOF). The final analysis included a principal component analysis (PCA) 

using all identified metabolites which were standardized using the z-score (mean = 0 and STD 

= 1). Only the principal components which had an eigenvalue >1 were included for the final 

PCA analysis. Loading plots were obtained to visualize potential clustering of metabolites 

depending and their influence on the principal components values. Finally, Pearson correlation 

coefficients were calculated between the PC and phenotypic traits measured at the feedlot and 

abattoir. 

 

5.4 Results 

5.4.1 Descriptive Statistics and Feedlot Data 

Table 5.2 shows the descriptive statistics for the N=123 animals with the number of 

variables recorded for each trait including the carcase attributes, weight gains and the adjusted 

RFI variables. All measures of RFI were very similar and ranged by 4.34 to 4.67 kg/d (Table 

5.2). The average Aus-meat marble score was 5.721 with a range from 2 through to 9, whereas 

the camera marbling was 23.7 ± 5.2% with the greatest being 36.5%. Measures of carcase fat 

showed the largest coefficient of variation (CV) between animals although CV was lowest for 

camera marbling and largest for Aus-Meat marble score. 

  



131 

 

 

Table 5.2: Descriptive statistics of N=123 Wagyu crossbred steers during the entire feedlot 

period and during the feed testing period to measure residual feed intake (RFI). 

Variable Minimum Mean Median Maximum 

Standard 

Deviation 

Coefficient 

of Variation 

Animal Data       

Wagyu percent (%) 48.44 68.48 75.00 100.00 16.25 23.74 

Age At Induction (days) 586 721 766 835 91.23 12.65 

Feedlot Induction Weight (kg) 316 384 382 478 31.00 8.072 

Grow Safe Trial Data       

RFI Trial Start Weight (kg) 346 461 455 583 38.65 8.380 

RFI Trial Finish Weight (kg) 519 640 636 815 56.24 8.791 

ADG RFI Trial, (kg/d) 0.690 1.167 1.150 1.660 0.197 16.93 

Dry matter intake, (kg/d) 7.01 9.95 9.96 12.750 1.085 10.91 

Adjusted RFI Variables        

Mid-trial Metabolic Body Weight, 

(kg) 0.75 
98 114 113 136 7.07 6.229 

Dry matter intake (% of BW) 1.367 1.809 1.815 2.332 0.168 9.278 

Feed Conversion Ratio, (kg DM/kg 

ADG) 
6.49 8.68 8.60 12.70 1.231 14.20 

Gain to Feed, (kg ADG/kg DMI) 0.079 0.117 0.116 0.154 0.016 13.30 

RFI, (kg/d) -2.130 0.000 -0.004 2.265 0.803 0.000 

RFI RF, (kg/d) -2.298 0.000 0.005 2.358 0.795 0.000 

RFI P8, (kg/d) -2.250 0.000 0.044 2.379 0.792 0.000 

RFI Marbling, (kg/d) -2.162 0.000 0.036 2.379 0.791 0.000 

RFI Marbling MSA, (kg/d) -2.167 0.000 0.028 2.172 0.789 0.000 

RFI Marbling Aus-meat, (kg/d) -2.197 0.000 0.013 2.147 0.791 0.000 

Residual Gain, (kg/d) -0.378 0.000 0.002 0.494 0.143 0.000 

Carcase Data       

Hot carcase weight (kg) 344 462 460 615 48.8 10.57 

Rib Fat, Log(mm) 1.386 2.290 2.303 3.258 0.427 18.63 

P8 Fat, (mm) 10.00 18.14 16.0 41.0 6.178 34.05 

Aus-meat Marble Score 2.00 5.721 5.00 9.00 2.311 40.39 

MSA Marble Score 410 816 760 1170 229 28.09 

Camera Marbling (%) 13.30 23.70 23.00 36.50 0.052 21.88 

 

Table 5.3 includes the partial Pearson correlation coefficients between the feedlot and 

carcase data and the adjusted RFI variables. All the adjusted RFI variables were significant (P 

≤ 0.01) for the dry matter intake trait as well as the residual gain, gain to feed and feed 

conversion ratio. The Aus-meat marble, MSA marbling, and P8 fat, had tendencies (P ≤ 0.10; 

table 5.3) for the original RFI trait. None of the other adjusted RFI traits were significant for 

the carcase traits such as camera marbling, HSCW, rib fat or eye muscle area. 
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Table 5.3 Pearson correlation table between different measures of feed efficiency and performance and carcase data for crossbred Wagyu steers. 

 

***, **, *, † is for P ≤ 0.001, P ≤ 0.01, P ≤ 0.05 and P ≤ 0.10, respectively. 
1 Residual Feed Intake 
2 Residual Feed Intake adjusted for camera marbling 
3 Residual Feed Intake adjusted for P8 fat 
4 Residual Feed Intake adjusted for Camera Marbling 
5 Residual Feed Intake adjusted for Aus-meat marbling 
6 Meat Standards Australia 
7 Hot Standard Carcase Weight 

Variable RFI1 
RFI1 Rib 

Fat 2 
RFI1 P83 

RFI1 

Camera 

Marbling4 

RFI1 

Aus-

meat5 

RFI1 

Marbling 

MSA6 

Residual 

Gain 

Feed 

Conversion 

Ratio 

Gain to 

Feed 

Feedlot Induction Weight -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.21* -0.09 0.09 

Average Daily Gain (Trial) 0.00 0.00 0.00 0.00 0.00 0.00 0.72*** -0.76*** 0.76*** 

Dry Matter Intake (% BW) 0.87*** 0.87*** 0.86*** 0.86*** 0.86*** 0.86*** 0.01 0.26*** -0.27*** 

Camera Marbling -0.13 -0.10 -0.10 0.00 0.01 -0.01 0.18* -0.11 0.11 

Aus-Meat Marble  -0.17† -0.13 -0.13 -0.04 0.00 0.00 0.16† -0.13 0.13 

MSA Marbling -0.15† -0.11 -0.12 -0.05 0.02 0.00 0.16† -0.13 0.14 

Eye Muscle Area 0.08 0.11 0.08 0.11 0.12 0.12 0.05 -0.07 0.08 

HSCW7 (Kg) 0.12 0.10 0.09 0.10 0.10 0.10 0.04 -0.22** 0.24** 

P8_Fat 0.16† 0.10 0.00 0.10 0.12 0.09 0.02 -0.07 0.05 

Rib Fat 0.14 0.00 0.07 0.08 0.09 0.07 -0.13 0.09 -0.10 

Metabolic Body Weight 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.29*** 0.29*** 

Residual Gain -0.43*** -0.42*** -0.42*** -0.42*** -0.42*** -0.42***  -0.91*** 0.92*** 

Gain to Feed -0.60*** -0.59*** -0.59*** -0.59*** -0.59*** -0.59*** 0.92*** -0.98***  

Feed Conversion Ratio 0.58*** 0.57*** 0.57*** 0.57*** 0.57*** 0.57*** -0.91***  -0.98*** 
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5.4.2 The interaction of the 78 DOF metabolome with feed efficiency and marbling 

Table 5.4 shows partial Pearson correlation coefficients between metabolites and the 

adjusted RFI variables at 78 DOF. All measurements of RFI had a high correlation between 

them (r ≥ 0.97; data not shown). However, the correlation between the different measures of 

RFI and RG, FCR and GD were much lower (r = -0.60 to 0.58; data not shown). There were 

36 metabolites identified using Chenomx. In general, the relationships between metabolites 

and measures of feed efficiency were few and low, ranging from -0.38 to 0.36 for methionine 

with FCR and GF, respectively (P < 0.05). Methionine, phenylalanine, histidine, and serine all 

had a negative relationship with the RFI traits (P ≤ 0.05). Glucose showed a negative 

correlation with RFI RF, RFI Aus-meat, and RFI MSA (Meat Standards Australia) although it 

showed similar tendencies for the rest of the RFI measures this was also observed with creatine 

(P ≤0.10). None of the RFI measures were positively correlated with the blood concentration 

of metabolites (P ≥ 0.05) although proline tended to be correlated with RFI and RFI P8 and 

choline with RFI Aus-meat (P ≤ 0.10; Table 5.4). The RG and GF were positively correlated 

with dimethyl sulfone, methionine, phenylalanine, glutamate, glutamine, carnosine, creatine, 

and acetone (P ≤ 0.05; Table 5.4). In addition, GF also showed positive relationships (P ≤ 0.05) 

with anserine, methyl-histidine, acetate, isobutyrate, glucose, allantoin and tyrosine (P < 0.05). 

The FCR produced similar results to RG and GF with the same metabolites but in the opposite 

direction with 13 negative relationships (P ≤ 0.05). 
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Table 5.4: Heat map illustrating Pearson partial correlation coefficients of the relationship 

between the relative abundance of plasma metabolites at 78 days on feed and different 

measurements of residual feed intake (RFI).  

Variable 

RFI1 

RFI1 

Rib Fat 
2 

RFI1 

P83 

RFI1 

Camera 

Marbling4 

RFI1 

Aus-

meat5 

RFI1 

Marbling 

MSA6 

Residual 

Gain 

Feed 

Conversion 

Ratio 

Gain to 

Feed 

3 Hydroxybutyrate -0.11 -0.10 -0.08 -0.08 -0.11 -0.10 0.08 -0.11 0.08 

Acetate -0.01 -0.03 0.00 0.02 0.00 0.01 0.16† -0.21* 0.18* 

Acetone -0.10 -0.10 -0.10 -0.09 -0.11 -0.10 0.18* -0.18* 0.18* 

Allantoin 0.06 0.05 0.07 0.05 0.06 0.05 0.14 -0.19* 0.19* 

Anserine -0.14 -0.15† -0.12 -0.15 -0.16† -0.16† 0.16† -0.16† 0.19* 

Arginine -0.06 -0.08 -0.05 -0.07 -0.09 -0.09 0.12 -0.10 0.14 

Aspartate -0.08 -0.08 -0.07 -0.11 -0.09 -0.11 0.04 -0.08 0.08 

Carnosine -0.13 -0.13 -0.11 -0.13 -0.12 -0.14 0.21* -0.26** 0.27** 

Choline 0.13 0.14 0.12 0.12 0.15† 0.13 -0.09 0.06 -0.08 

Citrate -0.02 -0.02 -0.01 0.00 0.01 0.00 -0.04 -0.03 0.02 

Creatine -0.16† -0.16† -0.12 -0.15† -0.16† -0.16† 0.18* -0.21* 0.22** 

Creatinine -0.13 -0.12 -0.10 -0.13 -0.13 -0.13 0.03 -0.10 0.11 

Dimethyl sulfone -0.14 -0.14 -0.12 -0.15† -0.13 -0.14 0.30*** -0.29*** 0.29*** 

Formate 0.04 0.06 0.05 0.05 0.02 0.04 0.09 -0.06 0.06 

Glucose -0.16† -0.18† -0.15 -0.17† -0.19* -0.19* 0.15 -0.13 0.16† 

Glutamate -0.13 -0.15 -0.11 -0.13 -0.11 -0.13 0.22** -0.27** 0.27** 

Glutamine -0.13 -0.14 -0.12 -0.14 -0.12 -0.14 0.19* -0.21* 0.22* 

Glycine -0.14 -0.16 -0.13† -0.15 -0.15† -0.15 0.07 -0.11 0.13 

Glycoprotein 

acetyls 0.01 0.03 0.02 0.03 0.04 0.04 -0.08 0.07 -0.09 

Histidine -0.19* -0.18* -0.15 -0.18* -0.19* -0.19* 0.05 -0.07 0.05 

Isobutyrate -0.15 -0.14 -0.11 -0.13 -0.15 -0.15 0.15† -0.22** 0.20* 

Isoleucine 0.06 0.05 0.04 0.05 0.05 0.03 -0.02 -0.03 0.06 

Lactate 0.10 0.11 0.10 0.12 0.11 0.12 -0.10 0.13 -0.12 

Leucine 0.00 -0.02 -0.03 -0.03 -0.04 -0.05 -0.01 -0.03 0.05 

Lipid VLDL8 0.13 0.14 0.12 0.12 0.15 0.13 -0.14 0.11 -0.13 

Lipid 0.11 0.11 0.09 0.09 0.12 0.11 -0.14 0.11 -0.13 
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Mannose 0.02 0.02 0.02 0.05 0.04 0.05 0.02 -0.02 0.00 

Methionine -0.23* -0.23** -0.21** -0.21* -0.21* -0.21* 0.34*** -0.38*** 0.36*** 

Methylhistidine -0.15† -0.17† -0.15 -0.16† -0.17† -0.18* 0.16† -0.16† 0.19* 

Phenylalanine -0.21* -0.21* -0.20* -0.20* -0.21* -0.21* 0.25** -0.29*** 0.29*** 

Proline 0.15† 0.14 0.15† 0.10 0.10 0.09 -0.05 0.08 -0.04 

Propionate 0.01 0.02 0.03 -0.01 -0.01 -0.01 0.02 0.01 0.01 

Serine -0.19* -0.20* -0.17* -0.22† -0.20* -0.22** 0.07 -0.10 0.12 

Tyrosine -0.03 -0.05 -0.05 -0.04 -0.05 -0.06 0.12 -0.19* 0.18* 

Unsaturated Lipid -0.06 -0.05 -0.03 -0.06 -0.07 -0.06 -0.02 0.03 -0.02 

Valine -0.05 -0.06 -0.07 -0.06 -0.08 -0.08 0.07 -0.09 0.09 

***, **, *, † P ≤ 0.001, P ≤ 0.01, P ≤ 0.05 and P ≤ 0.10, respectively. 
1 Residual Feed Intake 
2 Residual Feed Intake adjusted for camera marbling 
3 Residual Feed Intake adjusted for P8 fat 
4 Residual Feed Intake adjusted for Camera Marbling 
5 Residual Feed Intake adjusted for Aus-meat marbling 
6 Meat Standards Australia 
7 Hot Standard Carcase Weight 
8 

Very Low Density Lipid 

 

 

The PCA resulted in 5 PC selected which explained 68% of the variation were then used to 

draw correlation values with phenotypic variables of feed efficiency (Table 5.5). The PC1 was 

negatively correlated with RFI MARBLING MSA, RFI Aus-meat and FCR (P < 0.05), tended 

to be negatively correlated with RFI and RFI Camera Marbling (P < 0.10), and positively 

correlated (P < 0.05) with HSCW, induction and mid-trial metabolic BW, and ADG. The PC5 

was negatively correlated with RFI, FCR, P8 fat, and rib fat (P < 0.05) and positively with 

marbling and RG (P < 0.05). 
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Table 5.5: Pearson correlation coefficients between five principal components obtained from 

plasma metabolites measured at 78 days on feed and different measures of residual feed intake 

(RFI), carcase and feedlot performance. 

Variable Prin1 Prin2 Prin3 Prin4 Prin5 

Feedlot Induction Weight 0.20* 0.07 0.02 -0.07 -0.03 

Average Daily Gain (Trial) 0.26** 0.09 0.04 -0.06 0.05 

Dry Matter Intake (% BW) -0.14 0.02 -0.03 -0.06 -0.09 

Camera Marbling 0.01 0 0.05 0.02 0.23** 

Aus-Meat Marble  -0.02 0.04 0.06 -0.01 0.30*** 

MSA Marbling -0.01 0.03 0.08 -0.03 0.28*** 

Eye Muscle Area 0.07 0.05 0.07 -0.06 0 

HSCW1 (Kg) 0.17* 0.12 0.09 -0.14 -0.14† 

P8 Fat -0.05 0.05 -0.02 -0.22** -0.22** 

Rib Fat 0.03 0 0.08 -0.03 -0.17* 

Metabolic Body Weight 0.22** 0.1 0.07 -0.12 -0.08 

RFI2 -0.16† 0.02 -0.01 -0.1 -0.18* 

RFI2 Camera Marbling3 -0.17† 0.02 -0.02 -0.09 -0.13 

RFI2 Aus-meat4 -0.18* 0.04 -0.01 -0.1 -0.13 

RFI2 Marbling MSA5 -0.18* 0.02 -0.02 -0.09 -0.12 

RFI2 Rib Fat -0.17† 0.03 -0.02 -0.09 -0.16† 

RFI2 P8 -0.15 0.02 -0.01 -0.06 -0.14 

Residual Gain 0.21* 0.02 0 0.05 0.19* 

Gain to Feed 0.26** 0.05 0.04 0.03 0.17† 

Feed Conversion Ratio -0.24** -0.08 -0.02 -0.05 -0.20* 
***, **, *, † P ≤ 0.001, P ≤ 0.01, P ≤ 0.05 and P ≤ 0.10, respectively. 
1 Hot Standard Carcase Weight 
2Residual Feed Intake 
3Residual Feed Intake adjusted for camera marbling 
4 Residual Feed Intake adjusted for Aus-meat marbling 
5 Meat Standards Australia 

 

Figure 5.2 shows the loading plot for the PC 1 and PC5, which were selected because these 

showed the strongest correlations with RFI and carcase traits. The PC1 showed negative 

loading from those metabolites of the lipid metabolism and positive from amino acids. In 

contrast, positive loadings on PC5 were influenced by citrate, dimethyl sulfone, methionine, 

and histidine. Proline, leucine and isoleucine showed a negative loading in PC5. 
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Figure 5.2: Loading plot for principal components 1 and 5 from 36 identified metabolites of 

Wagyu crossbred steers sampled at 78 days on feed at the feedlot. 

 

 

 

 

 

 

 

 

 

 

 

 

5.4.3 The interaction of the 313 DOF plasma metabolome with feed efficiency and marbling  

Table 5.6 show the Pearson partial correlation coefficients between the metabolites and 

adjusted RFI variables at 313 DOF. There were 3 metabolites that had a negative relationship 

(acetone, dimethyl sulfone, and methionine), and 3 metabolites had a positive relationship 

(lipids, glycoprotein acetyls, and choline) with RFI adjusted values (P < 0.05). Citrate and 

phenylalanine tended to be negatively correlated with all FRI measures but glucose and methyl-

histidine only with RFI (P ≤ 0.10; Table 5.6). The GF and FCR were positively correlated with 

methionine, dimethyl sulfone, serine, and aspartate (P < 0.05), and glutamate (p < 0.10). The 

RG also resulted in similar trends to GF (P < 0.10).  
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Table 5.6: Heat map illustrating partial correlation coefficients of the relationship between 

adjusted RFI variables and the relative concentration of plasma metabolites at 313 days on 

feed (DOF) in Wagyu crossbred steers. 
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Variable 

RFI1 

RFI1 

Rib Fat 

2 

RFI1 

P83 

RFI1 

Camera 

Marbli

ng4 

RFI1 

Aus-

meat5 

RFI1 

Marbling 

MSA6 

Residua

l Gain 

Feed 

Conversi

on Ratio 

Gain 

to 

Feed 

3-Hydroxybutyrate -0.03 -0.02 0.03 -0.01 -0.02 -0.01 0.13 -0.09 0.13 

Acetate 0.04 0.04 0.07 0.05 0.05 0.05 0.11 -0.06 0.09 

Acetone -0.24** -0.25** -0.26** -0.22** -0.24** -0.22** 0.01 -0.09 0.08 

Allantoin 0.03 0.02 0.05 0.05 0.03 0.05 0.06 -0.09 0.11 

Anserine -0.14 -0.12 -0.09 -0.11 -0.13 -0.11 -0.01 -0.02 0.06 

Arginine -0.09 -0.07 -0.05 -0.07 -0.08 -0.07 -0.05 0.06 -0.02 

Aspartate -0.03 -0.04 -0.03 -0.02 -0.03 -0.03 0.17† -0.18* 0.18* 

Carnosine -0.04 -0.05 -0.03 -0.04 -0.06 -0.05 0.10 -0.10 0.09 

Choline 0.31*** 0.29*** 0.27** 0.28*** 0.29*** 0.27** -0.08 0.17† -0.18* 

Citrate -0.17† -0.15† -0.11 -0.15† -0.15† -0.14 -0.06 -0.01 0.01 

Creatine -0.12 -0.12 -0.07 -0.10 -0.11 -0.10 0.02 -0.08 0.09 

Creatinine -0.12 -0.10 -0.03 -0.10 -0.12 -0.10 0.04 -0.09 0.09 

Dimethyl sulfone -0.21* -0.21* -0.16† -0.20* -0.20* -0.20* 0.14† -0.21* 0.21* 

Formate -0.06 -0.05 -0.04 -0.04 -0.05 -0.04 -0.03 0.02 -0.04 

Glucose -0.15† -0.13 -0.10 -0.12 -0.14 -0.12 -0.04 0.01 0.03 

Glutamate -0.07 -0.07 -0.02 -0.06 -0.06 -0.05 0.18* -0.16† 0.16† 

Glutamine -0.06 -0.05 -0.02 -0.04 -0.05 -0.04 0.13 -0.13 0.13 

Glycine -0.09 -0.09 -0.05 -0.07 -0.09 -0.07 0.11 -0.14 0.13 

Glycoprotein acetyls 0.25** 0.23** 0.20* 0.22** 0.23** 0.21* -0.06 0.10 -0.13 

Histidine -0.06 -0.04 -0.01 -0.04 -0.05 -0.05 -0.14 0.10 -0.09 

Isobutyrate -0.06 -0.04 0.01 -0.03 -0.05 -0.04 0.12 -0.08 0.11 

Isoleucine 0.07 0.06 0.07 0.08 0.07 0.08 -0.05 -0.01 -0.01 

Lactate -0.12 -0.11 -0.12 -0.12 -0.11 -0.11 0.04 -0.03 0.05 

Leucine 0.04 0.03 0.02 0.04 0.03 0.04 -0.09 0.01 -0.03 

Lipid VLDL8 0.16† 0.13 0.09 0.14 0.14 0.13 -0.12 0.12 -0.16† 

Lipid 0.17* 0.14 0.10 0.15† 0.15† 0.14 -0.11 0.11 -0.14 

Mannose -0.07 -0.09 -0.10 -0.05 -0.06 -0.05 -0.17* 0.11 -0.11 

Methionine -0.20* -0.19* -0.19* -0.18* -0.18* -0.17† 0.28*** -0.33*** 

0.30**

* 
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***, **, *, † P ≤ 0.001, P ≤ 0.01, P ≤ 0.05 and P ≤ 0.10, respectively. 
1 Residual Feed Intake 
2 Residual Feed Intake adjusted for camera marbling 
3 Residual Feed Intake adjusted for P8 fat 
4 Residual Feed Intake adjusted for Camera Marbling 
5 Residual Feed Intake adjusted for Aus-meat marbling 
6 Meat Standards Australia 
7 Hot Standard Carcase Weight 
8 Very Low Density Lipid 

 

   

  

Methylhistidine -0.15† -0.13 -0.09 -0.12 -0.14 -0.12 0.00 -0.02 0.06 

Phenylalanine -0.16† -0.15† -0.13 -0.15† -0.15† -0.15† 0.06 -0.13 0.13 

Proline 0.10 0.11 0.11 0.12 0.10 0.12 -0.12 0.05 -0.08 

Propionate -0.04 -0.02 0.03 -0.01 -0.03 -0.02 -0.10 0.05 -0.04 

Serine 0.02 0.01 0.04 0.02 0.02 0.01 0.23** -0.20* 0.21** 

Tyrosine -0.07 -0.09 -0.07 -0.07 -0.08 -0.08 -0.03 -0.05 0.03 

Unsaturated Lipid 0.11 0.11 0.11 0.10 0.10 0.09 -0.15† 0.19* 

-

0.17** 

Valine -0.06 -0.06 -0.04 -0.04 -0.05 -0.04 0.03 -0.11 0.10 
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5.5 Discussion 

The present study examined the relationship between RFI (feed efficiency) and the relative 

abundance of plasma metabolites, while adjusting RFI calculations for meat quality traits 

associated with carcase fat such as rib fat, P8 fat, and marbling. The production of beef for 

important premium markets requires balancing the apparent antagonistic relationship between 

feed efficiency, which reduces the cost of production and the amount of intramuscular fat 

(marbling) which is associated with eating quality 1-3. This balance applies particularly to 

Wagyu beef cattle that require an extended period in a feedlot to achieve high marbling. In the 

present study, all measures of RFI adjusted for carcase fat were highly correlated and showed 

similar correlations with plasma metabolites. This suggested that BW and ADG are the main 

drivers of RFI and that adjusting for carcase fat may have little effect on the interpretation of 

metabolic data and the identification of biomarkers. The correlations between multiple 

measures of RFI and plasma metabolites were generally low (< 0.24). No strong biomarkers of 

RFI were found in the present study but instead there were a small number of metabolites with 

weak relationships with RFI. 

Residual gain (RG), feed conversion ratio (FCR), and the gain to feed ratio (GF), showed 

positive correlations with several metabolites (methionine, phenylalanine, dimethyl sulfone, 

carnosine, creatine, glutamate, glutamine, creatine). This was interpreted to suggest that 

different measures of feed efficiency share some metabolic pathways, although there were 

some differences in the strength of the correlation amongst RG, FCR and GF. Some metabolites 

(allantoin, tyrosine, acetate, glutamate, carnosine) were positively correlated with GF and FCR 

but not with RFI. However, the PCA indicated that efficient animals with higher RG and GF 

were associated with higher PC1 values and thus greater concentration of these amino acids 

and glucose. These results suggested that traits such as RG, GF and FCR could be more easily 

predicted from blood biomarkers compared to RFI because of the stronger and larger number 

of correlations with metabolites. Methionine and phenylalanine seem to be good biomarkers 

for most measures of feed efficiency and others with weaker correlations with feed efficiency 

traits could be of value (creatine, anserine, methylhistidine, glucose). In a study with Jersey 

and Holstein dairy cows, four metabolites (leucine, ornithine, pentadecanoic acid, and valine) 

were marginally associated with RFI 21. 

In Angus crossbred beef steers, different sets of metabolites were associated with RFI at 2 

weeks (creatine, glycine), 6 weeks (hippurate, glutamate, betaine, citrate, lysine, phenylalanine, 
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creatine, acetate, carnitine, and threonine) and 10 weeks (hydroxyisobutyrate, tyrosine, and 

formate) in a feedlot 4. Another study in Angus crossbred steers identified several metabolites 

(glycine, betaine, tyrosine, valine, and leucine) as potential biomarkers of RFI 5. Phenylalanine, 

creatine, and glycine were also associated with RFI in the present study. Glycine was the only 

metabolite in the present study to show a weak tendency for a negative correlation with RFI 

Rib Fat and RFI Aus-meat. The differences between studies for metabolites associated with 

RFI could potentially be explained by breed differences, diet, and the time in a feedlot. This 

highlights the need for more research to identify biomarkers that are predictors of feed 

efficiency. It is an important field of scientific inquiry and additionally has major industry 

application to replace costly and time-consuming individual animal performance 

measurements. 

In the present study, methionine was the only metabolite associated with RFI at both day 78 

and day 313 in the feedlot, although glucose and phenylalanine showed similar trends. Glucose 

is an important molecule in the animal’s metabolism and is related to insulin secretion which 

is involved in marbling deposition in Wagyu cattle. Insulin is proposed to increase lipogenesis 

and decrease lipolysis 6. The results shown in the present study indicate that glucose resistance 

and sensitivity are also related to the feed intake measurements when adjusted for carcass traits. 

Glucose is an important molecule in the synthesis of fat in relation to intra-muscular fat 

deposition7.  Methionine is used in many metabolic processes including protein synthesis, and 

it is often the first limiting amino acid in growing cattle 8,9. Methionine and serine were also 

correlated with RG, FCR and GF. Higher concentrations of these amino acids in plasma may 

indicate greater synthesis of microbial protein in the rumen 10. Serine is a non-essential amino 

acid that is an intermediary in glycolysis and methionine is involved in the synthesis of creatine 

by the liver 11. Cantalapiedra-Hijar, et al. 5 reported that methionine supplementation improved 

ADG but not feed efficiency.   

The strongest correlations with RFI at day 313 in the feedlot were for metabolites associated 

with lipid metabolism (choline, dimethyl sulfone, glycoprotein acetyls, lipids, lipid VLDL, and 

acetone). These metabolites were not associated with RFI at day 78. This finding suggested 

that metabolic processes linked to RFI change over time and may depend on the stage of body 

maturation and the rate of accretion of different tissues. For example, fat would be expected to 

have a faster accretion at day 313 compared with day 78 in the feedlot. Steers that had higher 

RFI early in the feedlot had higher relative abundance of lipids later when fat deposition is 
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expected to be faster. The relationship between marbling and RFI was weak (r ≤ -0.17; P < 

0.10) and P8 fat tended to be positively correlated with RFI (r = 0.16; P = 0.09). These 

observations were in agreement with previous studies in which animals with higher RFI had 

higher marbling at slaughter12. In a previous study we found that the negative correlation 

between lipids and marbling became stronger with increasing time in the feedlot and older 

animals 13,14 . It can be hypothesized that the greater rate of marbling accretion with maturity 

results in a faster uptake of circulating lipids. The present study builds on our previous studies 

and demonstrate that inefficient animals with high RFI adjusted for marbling have higher 

concentrations of lipids in blood as steers mature with time in a feedlot. It is proposed that lipid 

metabolism may be involved in feed efficiency though mechanisms in addition to fat 

deposition. 

Consolo, et al. 4 have recently undertaken a study that examined muscle and liver signatures 

associated with RFI intake in Nellore cattle. The study aimed at examining tissue samples from 

the liver and longissimus lumborum after slaughter and identifying the metabolites within the 

samples using an NMR instrument. The study indicated there are underlying mechanisms in 

regards to the RFI trait that need to be investigated and understood further, however the study 

showed there might be novel predictors available to predict animals that are more efficient. 

Foroutan, et al. 15 have produced a study that claims to have identified serum metabolites that 

could be potentially used as biomarkers to predict the RFI of young Angus bulls. The study 

examined three techniques, including NMR, liquid chromatography-tandem mass 

spectrometry, and inductively coupled plasma mass spectrometry. The most interesting aspect 

was that within their study they identified that Formate and Leucine were two candidate 

biomarkers. This is not consistent with the results that were seen within the present study, 

however there were multiple factors that were different between the studies such as the breed 

of cattle, the country, feed ration and many other factors.  

 

5.6 Conclusion 

Residual Feed Intake (RFI) is an important trait that can increase the productivity within the 

beef production system significantly; however, it is important this does not happen at the cost 

of carcase attributes. However, adjusting RFI for carcase fat does seem to have relevant 

influence on potential metabolic biomarkers in blood or on the interpretation of metabolomic 
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pathways. Alternative measures of feed efficiency such as residual gain and gain to feed have 

a larger influence on the number and strength of the correlations with metabolites and therefore, 

these traits should consider alternative biomarkers and metabolic pathways compared to RFI. 

Furthermore, the stage or degree of physiological maturity when biomarkers are measured 

should also be considered because this has a large influence on the potential biomarkers for 

RFI. Biomarkers of RFI shifted from protein metabolism (amino acids) early in the feedlot to 

lipid metabolism (choline and lipids) late in the feedlot when animals are closer to slaughter 

and thus at a faster fat accretion rate. Methionine was the most consistent metabolite associated 

with RFI adjusted for carcase fat independently of sampling time and thus this could be a key 

metabolite participating in both muscle and fat accretion. Carcase fat should be considered to 

adjust RFI when selecting Wagyu cattle because the two traits are generally antagonistic 

although the effect on blood biomarkers are negligible. 
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Chapter 6: General Discussion 

 

This chapter is an integration and summary of all main findings and conclusions from this 

thesis. Included within the discussion were the limitations and potential future research and 

applications arising from the findings shown in this thesis. The thesis attempted to investigate 

a systems biology approach to understanding the mechanisms involved in intramuscular fat or 

marbling deposition in Wagyu cattle by examining the metabolite profile, and a machine 

learning approach was then investigated to use the metabolomic information to predict how the 

animals would perform. The final approach was to examine the relationship between residual 

feed intake while adjusting the variable for carcase fat to ensure the animals that are selected 

are efficient as well as producing superior carcases.  

 

6.1 Introduction  

This thesis aimed at investigating the relationships between plasma metabolite profiles and 

carcase attributes, mainly marbling, residual feed intake (RFI) in Wagyu crossbred cattle. The 

ability to determine which animals are going to perform well early in the feedlotting process 

for both carcase traits and feed efficiency would increase the efficiency of Wagyu production 

significantly. This is due to the long time the animals spend in the feedlot (between 350-600 

days). Chapter 2 examined the relationship between the plasma metabolome and carcase traits 

such as marbling, subcutaneous fat, carcase weight, growth rate and eye muscle area. Chapter 

3 looked at changes in the plasma metabolome from early (196 DOF) compared to late (432 

DOF) in the feedlotting process. The fourth chapter examined the potential of predicting 

marbling using multiple models and datasets with machine learning, such as including animal 

farm data, metabolomic data, feedlot data and then a combination of all data recorded to predict 

the marbling group of the animals. The fifth chapter examined the effect of adjusting the RFI 

trait for carcase fat on the relationship with plasma metabolites measured at two time points, 

early (78 DOF) and late (313 DOF) in the feedlot. A summary of the aims, objectives and 

findings for each paper is included in Figure 6.1.  

 



147 

 

 

6.2 Summary  

Figure 6. 1. The main objectives and findings of experimental chapters 2 to 5.  
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6.3 Main Findings 

The present thesis has highlighted several factors that should be considered to further advance 

the field of metabolomics to both understand the biology of fat deposition and muscle growth 

and continue developing the technique for the prediction of carcase traits and feed efficiency 

that could see applications for animal management and genetic improvement. This section 

discusses some of the most important factors to consider including the effect of sampling time, 

effects of animal genetics, and the integration of biological mechanisms involved in fat and 

muscle deposition. 

6.3.1 Effect of sampling time 

One of the key aims of this thesis was to evaluate the effect of time in the feedlot to sample 

Wagyu crossbred steers on the accuracy of the prediction of carcase traits such as marbling, 

and on the relationship between metabolites, marbling and RFI adjusted for carcase fat. There 

was a research gap in both topics and to the author’s best knowledge there have not been any 

studies undertaken in Wagyu cattle to investigate the relationships between metabolomics and 

carcase traits or RFI as shown in this thesis. It was important to investigate the effect of 

sampling time in the feedlot because the earlier the animals are identified as likely to produce 

a superior carcase the more economic gains that could be achieved. Interestingly, glucose had 

a positive and lipids a negative relationship with marbling at the latest sampling time of 163 

DOF but not earlier but the PCA demonstrated no significant separation of the metabolome of 

the 3 DOF groups. Wagyu feedlot production in Australia normally starts with the feeder 

animal inducted in the feedlot with approximately 350 kg of BW after these have been 

backgrounded to develop the frame and muscle but before they mature and deposit fat. 

Therefore, Wagyu feedlot cattle first develop the frame and then reach physiological maturity 

when fat deposition increases late in the feedlot. The metabolism of these animals is therefore 

changing as the animals reach maturity, with bone and muscle growth being predominant in 

the early period at the feedlot and fat deposition gaining importance later in the feedlot period 

1. Therefore, the animal is expected to change metabolism throughout the feedlot process, 

which may be reflected in the metabolome. The analysis undertaken in chapter 2 investigated 

the relationships between the relative abundance of metabolites early in the feedlot period (65 

to 163 DOF) and frame size measured through HSCW, muscling measured through EMA, and 

carcase fatness measured through marbling and subcutaneous fat. The conclusion from this 

study was that the time of sampling was not a critical factor concerning the plasma metabolome 
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but the three groups of animals were relatively early in the feedlotting process. However, 

glucose and lipids had a strong positive and negative correlation with marbling at 163 DOF but 

not earlier. These results may support the hypothesis that the metabolome is changing with 

time in the feedlot. It is hypothesized that these findings are due to animals depositing more fat 

the later they are sampled with glucose being used for lipogenesis and lipids being uptake for 

fat deposition in tissues. In contrast to Chapter 2, Chapter 3 examined the effect of sampling a 

cohort of animals in the middle (196 DoF) and late (432 DoF) of the feedlotting process. There 

were significant changes in the plasma metabolite profile between these sampling times as 

demonstrated in the PCA with a decrease in lipids and an increase in metabolites of 

carbohydrate energy metabolism such as glucose, propionate, creatine, creatinine, lactate and 

β-hydroxybutyrate. In addition, marbling was correlated with more metabolites in Chapter 3 

compared to Chapter 2 (21 vs 7 metabolites) and there were many more metabolites that 

showed a significant interaction between sampling time and marbling (9 metabolites with P ≤ 

0.05 and 8 metabolites with P ≤ 0.10) including glucose and lipids which also became stronger 

later in the feeding period. These results demonstrate changes in the metabolism as the animal 

matures and deposit more fat late in the feeding period. However, it is also worth mentioning 

that predicting marbling of animals later in the feedlotting process would be less beneficial 

concerning improving the economics of Wagyu production as the animals have already 

consumed a large amount of feed. The ideal time to sample animals to predict the carcase traits 

would be early in the feedlotting process although results of the present thesis suggest this may 

be less accurate. The changes in the plasma metabolome were expected due to the changes in 

the animal’s metabolism requiring different metabolites that are precursors of the tissue 

experiencing faster growth at a given point in time such as depositing fat within the muscle 

towards the end of the lot feeding process.  

The relationship between glucose and lipids and marbling was shown to have a significant 

interaction in chapters 2, 3 and 5. Chapter 2 showed there was a significant relationship (P < 

0.05) between marbling and DOF, chapter 3 indicated the molecules glucose and VLDL lipid 

had a correlation coefficient of 0.54 and 0.48 respectively. In chapter 5, glucose showed a 

tendency or a significant relationship with all of the RFI traits adjusted for carcass traits such 

as marbling and HSCW. The re-occurring significance of glucose and marbling relationships 

could be related to the insulin resistance or altered insulin sensitivity. Insulin resistance refers 

to the decreased amino acid use for protein synthesis and increased fat deopsition2. . Gotoh, et 
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al. 3 indicated there is little information detailing the relationship between insulin secretion and 

marbling in Wagyu cattle and the amount of insulin secreted is increased by plasma propionate, 

butyrate, or glucose in steers. The plasma insulin concentration and carcass fat proportion was 

greater in Wagyu (600 kg slaughter weight) than in Holstein cattle (700 kg slaughter weight)4, 

this result indicates that Wagyu steers have greater plasma insulin levels during the fattening 

period than Holstein steers. Insulin is a molecule that is associated with the glucose 

metabolism, regulating many aspects of growth and development by signalling nutritional 

conditions to growing tissues. Wagyu cattle have a greater propensity to deposit intramuscular 

fat which highlights that there needs to be further research to examine the relationship between 

the endocrine system and carcass attributes such as marbling. Shingu, et al. 5 have also shown 

greater concentration of insulin in Japanese black heifers compared to Holstein heifers at 18 

months of age. Each of the above studies indicate that there is a relationship between the plasma 

insulin secretion and intramuscular fat production in Wagyu cattle however there needs to be 

further study and investigation to be able to fully understand the mechanisms and relationships 

between them.   

Chapter 5 also demonstrated a significant change in the metabolome of cattle sampled at 78 

and 313 DOF (data not shown). More importantly, the relationship between the relative 

abundance of metabolites and the multiple measures of feed efficiency also changed between 

sampling times. The results demonstrated that RFI was correlated with compounds involved 

muscle protein, energy and glucose metabolism at 78 but not at 313 DOF (e.g., glucose, 

histidine, phenylalanine and serine), whereas those involved in lipid metabolism such as 

choline and glycoprotein acetyls were correlated with RFI at 313 DOF but not at 78 DOF. 

Interestingly, 9 amino acids were significantly correlated with residual gain and gain to feed at 

78 DOF but only 3 were correlated with these at 313 DOF. The results indicate that the 

metabolic processes underlying RFI change over time as animals mature, with protein and 

energy metabolism being more prevalent early and lipid metabolism being more prevalent late 

in the feedlot. It is important to point out that this is assuming that RFI does not change over 

time and animals are still ranking the same for feed efficiency measured until 183 DOF as it 

would be at 313 DOF. However, it is important to note that RFI was not measured at 313 DOF 

but only till 183 DOF and therefore, results should be interpreted with caution. Some 

metabolites such as methionine were correlated with all measures of feed efficiency and both 

early and late in the feedlot. More research is needed to fully understand the role of methionine 
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on feed efficiency of long-fed feedlot Wagyu cattle including the effects on muscle and fat 

metabolism. Sampling animals earlier in the feedlotting process to determine which animals 

are going to be more efficient that others is the ideal time.  

In addition to sampling time regarding the feedlotting period, sampling time within the day 

could also influence the metabolome of cattle although no research seems to exist 

demonstrating changes in the metabolome within a day. The animals in Chapter 5 were sampled 

later in the day (afternoon) compared to animals in the other chapters which were sampled 

early in the day before feed delivery due to other cohorts of animals being processed before 

them on the day of sampling. This factor seemed to influence the relationship with carcase 

attributes. Only proline had a significant relationship (P ≤ 0.05) with camera marbling at 

sample point 1 (early) and citrate and glutamate tended to be correlated with marbling (P ≤ 

0.10). At sampling point 2, there were four metabolites that tended to be correlated with 

marbling (isobutyrate, methionine, glutamine, and citrate; P ≤ 0.10). These findings may 

suggest that sampling of animals later in the afternoon is not ideal to predict carcase traits. 

However, more research is needed to confirm this observation where animals are sampled both 

in the morning before feeding and in the afternoon after feeding. It is proposed the ideal time 

to sample animals would be in the morning prior feed delivery even if the animals have ad 

libitum access to feed. The two cohorts of animals examined in Chapters 2 and 3 were also 

different groups of animals however, they were sampled using the same method, moving the 

animals to the central holding facilities in the morning and sampling them before the feed truck 

had arrived.  

6.3.2 Effects of genetics 

Sire had a strong effect on important carcase traits (such as marbling and carcase weight) as 

described in Chapters 2 and 3 demonstrating the genetic influence on the performance of the 

animals. Sire had a significant effect (P ≤ 0.05) on the carcase traits of Aus-meat marbling, 

camera marbling, rump fat, growth rate, age at induction (feedlot), age at slaughter, induction 

weight, feedlot exit weight and Wagyu content. Furthermore, sire influenced the relative 

concentration (P ≤ 0.05) of 13 out of the 35 identified metabolites and there were 6 metabolites 

that tended (P ≤ 0.10) to be affected by sire. The results of Chapter 2 showed that genotype 

had a large impact on both the metabolome and carcase traits and meat quality. Although not 

published in Chapter 3, the results also showed the effect of sire on these carcase traits. Sire 

had a significant (P ≤ 0.05) for the metabolites glycoprotein acetyls, unsaturated lipids, 
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arginine, choline, methylhistidine, lipid VLDL, isobutyrate, lipids, tyrosine, allantoin, 

propionate and 3-hydroxybutyrate in chapter 3 although these results were not published as it 

was not the objective of the study. Therefore, sire has a significant influence on profit due to 

the long feeding regimes of Wagyu cattle to ensure high marbling is achieved. This strongly 

supports the hypothesis that genetic mechanisms control the animals’ metabolism, which is 

linked to intramuscular fat deposition. Park, et al. 6 have conducted a review and shown that 

marbling is influenced by multiple factors such as management, environmental, genetic and 

nutritional influences can all impact how well the animal produces marbling. 

Another analysis that was undertaken as part of this thesis included a genome wide association 

study using 150K SNP data that was imputed, 895 animal genotypes were used. There was not 

enough time to complete the analysis within the present thesis however the table below shows 

the results that were produced for Aus-meat marbling, camera marbling, HSCW and the 

metabolite 3-hydroxybutyrate. This metabolite was chosen because it was correlated with 

marbling in both Chapters 2 and 3. The source of genetic variance (V (G)), environmental 

variance (V (E)), phenotypic variance (V (p)) and the overall heritability for each trait (V (G) 

/ V (E)) are shown in Table 6.1. The heritability calculated for the animals in the present study 

are consistent with previous literature. Oyama 7 reviewed that the heritability ranged from 0.23-

0.78 for carcase weight, 0.16-0.74 for marbling (on a 12-point scale). The heritability of the 

present thesis was 0.38 and 0.54 for Aus-meat and camera marbling, respectively (Table 6.1). 

The interesting aspect of this analysis was the heritability of the metabolite 3-hydroxybutyrate 

(Table 6.1), which was similar to that of marbling, and it was correlated with marbling in 

chapters 2 and 3. These results suggest that the use of metabolomics and genomics together 

could increase the accuracy of prediction of marbling in cattle. 
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Table 6.1: Genetic, environmental and phenotypic variance, and heritability of Aus-meat 

marbling, camera marbling, hot standard carcase weight, and the metabolite 3-hydroxybutyrate 

measured in 895 crossbred wagyu steers using 150K SNP profile. 

Source Aus-Meat 

Marbling 

Camera 

Marbling 

HSCW 3-

hydroxybutyrate 

Genetic Variance 

(V(G)) 
0.95 ± 0.216 13.37 ± 2.739 970.18 ± 152.392 15.25 ± 4.922 

Environmental 

Variance (V(E)) 
1.57 ± 0.167 11.60 ± 1.938 487.13 ± 95.321 27.51 ± 3.722 

Phenotypic Variance 

(V(p)) 
2.53 ± 0.136 24.98 ± 1.548 1457.31 ± 87.206 42.76 ± 2.635 

Heritability 

V(G) / V (E) 
0.38 ± 0.074 0.54 ± 0.089 0.67 ± 0.076 0.36 ± 0.102 

 

Another factor that influences marbling deposition of Wagyu crossbred cattle includes the 

breed used in the crossbreeding program and the Wagyu content of the animals 8. In Wagyu 

cattle, there is a trade-off between marbling and carcase weight because the price received per 

kg depends on the marbling score and animals that reach greater marbling tend to have lighter 

carcases as demonstrated in Chapter 2. Increasing Wagyu content of the animals increases 

marbling however there are breeds that can produce a highly desirable product in the first 

generation (F1). The current slaughter grid price is $16/kg, $15.30/kg, $14.40/kg, $13.20/kg, 

$12/kg, $10.50/kg and $9/kg for a marble score 9, 8, 7, 6, 5, 4 and 3 respectively for Wagyu 

steers that have been fed for greater than 350 days in a feedlot.  Figure 6.2 illustrates the 

increasing marbling score as the Wagyu content increases. Interestingly, the progeny of Dairy 

dams produced carcases with high marbling from F1 whereas the other breeds increased 

marbling with the proportion of Wagyu.  
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Figure 6.2: Average Aus-meat marbling score for F1, F2, F3 and F4 crossbred Wagyu steers 

illustrating the impact of the dam breed crossed with and Wagyu content.  

 

A, B, C, D, E, F, G Means within rows without a common superscript differ (P < 0.05). 

 

Similarly, Figure 6.3 shows the relationship between HSCW, dam breed, and Wagyu content. 

Results show that Shorthorn not only produce carcases with high marbling but also the heaviest 

carcases, and all breeds (except Dairy) produce lighter carcases with increasing Wagyu content.  
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Figure 6.3: Average hot standard carcase weight for F1, F2, F3 and F4 crossbred Wagyu steers 

illustrating the impact of the dam breed crossed with and Wagyu content.  

 

A, B, C, D, E, F, G Means within rows without a common superscript differ (P < 0.05). 

 

Therefore, an index can be calculated to integrate both marbling and HSCW by multiplying 

both variables. Figure 6.4 illustrates the increase in carcase index (marble score x HSCW) with 

Wagyu content (%) or the generation repeatedly used in crossbreeding where the bull is always 

fullblood or purebred Wagyu. The F1 with 50% Wagyu had on average the lowest carcase 

index whereas F4 animals with 94% Wagyu have the highest carcase index because of the 

greater marbling achieved. This is also translated to increasing carcase value with increasing 

Wagyu content as shown in Chapter 1. The breed of the dam that the Wagyu bull is crossed 

with also has an impact on marbling with Shorthorn animals responding better to crossbreeding 

in F1 and F2 compared to Angus as reflected in higher carcase index (Figure 6.4). This is an 

important finding because demonstrates the impact of the crossbreeding program on marbling, 

carcase weight and potential economic returns. Furthermore, these results demonstrate that the 

lack of carcase feedback information to the calf producer or breeder would affect genetic 

progress to increase marble score.  
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Figure 6.4: Average carcase index calculated as marbling score by carcase weight for F1, F2, 

F3 and F4 crossbred animals illustrating the impact of the dam breed crossed with and Wagyu 

content.  

 A, B, C, X Means within rows without a common superscript differ (P < 0.05). 

 

The discussion above demonstrates the importance of genetics on performance, carcase traits 

and animal metabolism, all of which are linked. The present thesis demonstrated proof-of-

concept of these relationships and encourages further research integrating these datasets to 

advance genetic and production improvement in the Wagyu industry. 
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relationship with carcase traits across different groups of animals was investigated to determine 
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and may have been genetically similar. The metabolic mechanisms involved in intramuscular 
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propionate, glucose and lipids showed a significant relationship with marbling in both Chapters 

2 and 3, which indicates these metabolites have an important function in the metabolism and 

deposition of marbling in Wagyu steers. Propionate and 3-hydroxybutyrate are molecules that 

are used in the tricarboxylic acid cycle (TCA); plasma propionate has been shown to increase 

the secretion of insulin, which activates lipogenic enzymes, which can accelerate the fatty acid 

synthesis needed for intramuscular fat 9. Furthermore, 3-hydroxybutyrate was correlated with 

HSCW in Chapter 2 indicating it is an important molecule for muscle energy and metabolism 

as well. Glucose is another molecule that is also used in the TCA cycle, as it is one of the 

precursors for fatty acid synthesis and Duarte, et al. 10 have shown that glucose is preferred by 

intramuscular adipocytes.  

The metabolites acetate, histidine, creatine, and isoleucine were correlated with marbling in 

Chapter 2 although these were not significant in Chapter 3. One potential explanation is that 

these metabolites are not critical for intramuscular fat deposition when the animals are maturing 

but they may benefit adipocytes in younger animals such as it was the case with animals in 

Chapter 2. However, evidence to support this speculation is lacking and further research is 

needed. Acetate is a key part of the TCA cycle, and it is converted to 3-hydroxybutyrate once 

absorbed from the rumen and then oxidised in the TCA cycle or used for fatty acid synthesis 

11. Creatine is also an important molecule although it was assumed that it was not used in fat 

tissue metabolism but in muscle and brain tissue metabolism aiding in the recycling of ATP 12 

. However, the fact that creatine was correlated with marbling in both Chapters 2 (P < 0.05) 

and 3 (P = 0.06) suggest that it may play a direct or indirect role in intramuscular fat deposition.  

The findings from Chapters 2 and 3 highlight that the metabolites that were identified in the 

plasma of Wagyu steers are important in both muscle and fat metabolism. These are 

encouraging results opening new opportunities to select higher performing animals using 

metabolomics and understanding the relationships between the molecules and animals’ 

metabolism.   

 

6.4 Practical applications, limitations, and future directions 

The studies within this thesis undertook a novel approach to understand muscle and fat 

metabolism, and feed efficiency in Wagyu cattle and search for potential new ways to select 

high performing animals using blood biomarkers. Further research is required to continue 
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developing the framework and address important challenges because the production system of 

Wagyu cattle is currently a time consuming and expensive process. Alternative ways to 

determine feed efficiency and future marbling of Wagyu cattle would enable the whole industry 

to improve. The application of metabolomics in this context was important and multiple aspects 

of the technology were investigated in the present thesis such as the effect of sampling time, 

machine learning and biological relationships between metabolic processes and economically 

important outcomes.  

The current thesis examined samples collected in a commercial feedlot to ensure industry 

application and potential generalisation of results, and to determine if all the processes used 

could be applied efficiently to the current production systems. Although this is an important 

part of the process, it was also challenging to evaluate the relationships under commercial 

conditions with sampling of steers from different cohorts, times of the year, genetics, and diets. 

In addition, the animals were selected to enter the feedlot under commercial drivers and the 

time in which the animals could be sampled was determined by the operators and feedlot staff. 

The duration in which the animals were sampled couple also influence the results due to the 

core temperature increasing, the animals missing the morning feeding and being hungry and 

excited by the change of routine. All of these factors influence the plasma metabolome, 

moreover collaborating with a commercial feedlot, the researcher has limited control over the 

heterogeneity/homogeneity of the study cohorts. There were variables that were not ideal 

throughout the studies.  

Therefore, there were questions arising from the findings in the present thesis that may need to 

be examined under more controlled conditions. For example, the methods used in the present 

thesis would need to be evaluated in other populations of cattle from different producers to 

ensure the results are repeatable at multiple locations across the country. Further research on 

the within-day changes in the metabolome of cattle with feeding and under different diets (e.g., 

high and low forage diets) is also needed. Research under more controlled conditions where 

liver or tissue biopsies can be obtained for further metabolomic analysis, gene expression, epi-

genetic changes, or proteomics would also be of great value to link with changes in circulating 

metabolites. 

The ability to select higher performing animals using a metabolite biomarker would be an ideal 

situation if the steers could be drafted at feedlot induction or a week or two into it. To enable 
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this process to happen efficiently, a crush side test would be the ideal way to identify which 

animals to put into a long-fed program and which animals should be sent into another feeding 

regime or production system. This would require evaluation of the biomarkers identified in 

different groups of cattle and at different locations, and then the development of an assay that 

can be used at the feedlot. Although this technology may be possible in the distant future, it is 

worth to continue evaluating the methods and approach developed in the present thesis with 

the aim to increase the productivity of the Wagyu production system.  

The effect of sire on metabolites and carcase traits indicate there is a genetic factor that is 

influencing intramuscular fat deposition in Wagyu cattle. The present study used animals from 

a crossbreeding program with potentially ‘unstable’ or changing gene pool which may differ 

from using purebred or full blood Wagyu progeny. The genomic analysis and integration with 

metabolomics were beyond the scope of the present thesis but further research into the 

relationship between the genome and metabolites in Wagyu cattle is encouraged. The inclusion 

of metabolomic data may increase the accuracy of the genomic predictions to identify animals 

that are going to produce a superior carcase early in the feedlotting process.  

 

6.5 Final Conclusions  

This thesis has made a significant contribution to the understanding of marbling and residual 

feed intake in Wagyu crossbred cattle using a metabolomics approach. The results presented 

have shown that sampling within 160 days from arrival to the feedlot does not have a significant 

influence on the metabolome, but samples obtained further apart than approximately 200 days 

could imply significant changes in the metabolome and the interpretation of the results. 

Machine learning can help developing prediction algorithms of marbling and RFI traits 

adjusted for important carcase traits such as marbling using metabolomics data as predictors. 

This approach showed promise to increase knowledge of the biological mechanisms involved 

in the regulation of these traits and for selection purposes. Metabolomics is an important tool 

in the search for increasing efficiency in the Wagyu feedlotting sector. There is a requirement 

for further evaluation of the methods produced in the present thesis to new cohorts of animals 

as well as investigation into the relationships between genomics and metabolomics.  
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