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Abstract: Japanese Black cattle (Japanese Wagyu) have a unique phenotype in which ectopic intramus-
cular fat accumulates in skeletal muscle, producing finely marbled beef. However, the mechanism
of intramuscular fat formation in Japanese Black cattle remains unclear. To investigate the key
genes involved in intramuscular fat accumulation, we comprehensively analyzed mRNA levels in
subcutaneous and intramuscular fat tissues using RNA sequence (RNA-seq) analysis, which detected
27,606 genes. We identified eight key genes, namely carboxypeptidase E, tenascin C, transgelin,
collagen type IV alpha 5 (COL4A5), cysteine and glycine-rich protein 2, PDZ, and LIM domain 3,
phosphatase 1 regulatory inhibitor subunit 14A, and regulator of calcineurin 2. These genes were
highly and specifically expressed in intramuscular fat tissue. Immunohistochemical analysis revealed
a collagen network, including COL4A5, in the basement membrane around the intramuscular fat
tissue. Moreover, pathway analysis revealed that, in intramuscular fat tissue, differentially expressed
genes are related to cell adhesion, proliferation, and cancer pathways. Furthermore, pathway analysis
showed that the transforming growth factor-β (TGF-β) and small GTPases regulators RASGRP3,
ARHGEF26, ARHGAP10, ARHGAP24, and DLC were upregulated in intramuscular fat. Our study
suggests that these genes are involved in intramuscular fat formation in Japanese Black cattle.

Keywords: wagyu; adipocyte; RNA-seq; TGF-β; transcriptome; collagen; COL4A5; CPE; TNC; TAGLN

1. Introduction

Japanese Black cattle (i.e., Japanese Wagyu) are among the most expensive meats,
characterized by excellent marbling, rich and sweet aroma (the so-called Wagyu beef
aroma) [1,2]. Japanese Black cattle are pure Wagyu species that originate from pedigrees,
such as Tajima, Kedaka, and Itozakura in Japan [3], whereas hybrid breeds with other
cattle species are widespread all over the world. Marbling is a phenotype in which ectopic
intramuscular fat accumulates in muscle tissue. In humans, excessive dietary lipid intake
and age-related senescence lead to ectopic intramuscular fat in skeletal muscle. Fatty
acid accumulation correlates with lipotoxicity-related cell dysfunction and is associated
with sarcopenic obesity [4]. However, unlike cattle, humans accumulate intramuscular fat
due to senescence and illness. Therefore, the marbling traits of Japanese Black cattle are
considered a valuable research model for elucidating the molecular mechanism of ectopic
intramuscular fat formation in various livestock, as well as in humans [5].

Intramuscular fat is thought to be formed by the myogenic transdifferentiation of myo-
genic stem cells [6] or a multi-step differentiation process from fibroblast-like preadipocytes
to mature adipocytes [7]. The preadipocytes also regulate proliferation, differentiation,
and lipogenesis with surrounding connective tissues through intercellular communication
via paracrine factors, extracellular matrix (ECM), and cell-cell adhesion [8]. A genome-
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wide analysis has been conducted to study the genetic traits of intramuscular fat in live-
stock [9,10]; however, the molecular mechanism of intramuscular fat formation remains
unknown. Intramuscular fat formation is a quantitative trait affected by environmental
factors and genomic sequences. The difficulty in identifying key genes related to intramus-
cular fat accumulation is the requirement to consider environmental factors. Therefore,
we performed a transcriptome analysis to attempt to elucidate this molecular mechanism.
Recent improvements in the comprehensive analysis of large-scale RNA sequencing (RNA-
seq) data have been generated, and several research institutes attempted to study mRNA
expression profiles in cattle [11–14]. However, RNA-seq analysis has not been performed
to report the transcriptome associated with pure Japanese Black cattle.

To search for the key genes involved in intramuscular fat accumulation, we per-
formed comparative RNA-seq analyses of subcutaneous and intramuscular fat tissues from
Japanese Black cattle, which exhibit low genetic and environmental variation. Additionally,
we performed quantitative PCR (qPCR) analysis and tissue immunostaining of the identi-
fied characteristic genes to explore the molecular mechanism associated with intramuscular
fat formation. Furthermore, we examined the molecular switches related to the signal
transduction pathways involved in intramuscular fat formation using pathway analysis.

2. Materials and Methods
2.1. Reagents

The following antibodies used for immunostaining were purchased from Cosmo Bio
Co., Ltd. (Tokyo, Japan): COL4A1 (CSB-PA001748), COL4A2 (CSB-PA007068), COL4A3
(CSB-PA007069), COL4A4 (PAC142HU08), COL4A5 (WLS-MAC141HU21), and COL4A6
(CSB-PA001750).

2.2. Japanese Black Cattle

In this study, we analyzed the intramuscular and subcutaneous fat of four Japanese
Black cattle. The four cattle are of a similar breed. Their pedigree is a hybrid of the Tajima,
Kedaka, and Itozakura strains, exhibiting excellent bodyweight growth [1,15,16]. The sam-
pled cattle were selected from representative breeds (>27 months old; meat grade: ≥4;
steers) produced in Japan. The cattle were fattened for 20 months on a common beef cattle
diet consisting of grass hay plus compound feed (wheat bran, barley, feed corn, soybean
meal, rice bran, minerals, vitamins, etc.). Immediately after slaughter, the sternocleido-
mastoid muscle of the cattle was collected by the technical staff of the Commercial Meat
Processing Center (Kobe, Japan). This experiment does not include animal experimentation
because the sampling was designed in the process of commercial distribution of beef with
the cooperation of general livestock farmers.

2.3. RNA Preparation from Fat Tissue

Subcutaneous fat and intramuscular fat were collected and immersed in Nucleic acid
preservation (NAP) buffer (19 mM EDTA, 18 mM trisodium citrate, and 3.8 M ammonium
sulfate pH 5.2). After complete removal of fine connective tissue under a stereomicroscope,
each tissue was cryopreserved at −80 ◦C.

Total RNA was purified using ~100 mg of fat tissue by the Maxwell RSC simply
RNA tissue kit using a Maxwell RSC instrument (Promega K. K., Tokyo, Japan) according
to manufacturer instructions. The concentration of the obtained RNA was measured
using a NanoDrop spectrophotometer (Thermo Fisher Scientific K.K., Tokyo, Japan). RNA
samples were quality checked by the Agilent 2200 TapeStation (Agilent Technologies Japan,
Tokyo, Japan), and high-purity samples with a degradation index RNA integrity number
equivalent ≥ 7.6 were subjected to an RNA-seq analysis.

2.4. Preparation of Sequence Library

Purified RNA (10 ng) was amplified by PCR amplification (7 cycles) using the Clontech
SMART-Seq v4 Ultra Low Input RNA kit (Takara Bio, Kusatsu, Japan) for construction and
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sequencing of the total RNA-seq library. The PCR product was purified by the magnetic
bead method using AMPure XP (Beckman Coulter, Tokyo, Japan). Double-stranded cDNA
(0.2 ng) was generated and barcoded by PCR amplification (11 cycles) using the Nextera XT
DNA Library Prep kit (Illumina K.K., Tokyo, Japan). The sequence library was validated
using a fragment analyzer (Agilent Technologies, Tokyo, Japan).

2.5. RNA-seq Analysis

The sequence library was sequenced on the Illumina NovaSeq 6000 with a NovaSeq
6000 S4 reagent kit and NovaSeq Xp 4-Lane kit (Illumina K.K.). Analyses were performed
according to a sequence read length of 150 bp via paired-end sequencing using NovaSeq
control software (v1.6.0), RTA (v3.4.4), and bcl2fastq2 (v2.20) from Illumina K.K.

The Genedata Profiler Genome (v.13.0.11; Genedata K.K., Tokyo, Japan) was used
for sequence analysis. The read sequence was mapped onto the genome sequence using
the mapping software STAR (v.2.6.0c) annotated from the obtained genome position, and
the expression level was calculated for each gene and transcript. Data were analyzed
using the bovine genome sequence ARS-UCD1.2 (GCA 002263795.2) and gene databases
(Bos taurus; ARS-UCD1.2.dna.toplevel.fa.gz (ftp://ftp.ensembl.org/pub/release-99/fasta/
homo_sapiens/dna/, accessed on 13 March 2020) and ARS-UCD1.2.99.gtf.gz (ftp://ftp.
ensembl.org/pub/release-99/gtf/bos_taurus/, accessed on 13 March 2020).

2.6. Gene Expression Analysis

Differentially expressed genes (DEGs) were determined by comparing the difference
between the log2 transcripts per million (TPM) values of intramuscular and subcutaneous
fat tissue, which was statistically evaluated with a t-test (significance: p < 0.05). Clustering
analysis was performed using a 1625 DEGs MultiExperiment Viewer (Mev v.4.9, https:
//sourceforge.net/projects/mev-tm4/, accessed on 12 April 2021). A Gene Ontology
(GO) analysis and a Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were
performed on 1625 DEGs using the Database for Annotation, Visualization, and Integrated
Discovery (DAVID v.6.8, http://www.genome.jp/kegg/, accessed on 12 April 2021).

2.7. qPCR Analysis

cDNA libraries were constructed using ReverTra Ace qPCR RT master mix with gDNA
Remover (Toyobo, Osaka, Japan). qPCR was performed using the One-step TB Green
Primescript RT-PCR kit II (Takara Bio) and a Dice Real-Time System Lite thermocycler
(Takara Bio) according to manufacturer instructions, with bovine β-tubulin used as an
internal standard. The thermocycling conditions were as follows: heating at 95 ◦C for
30 s, followed by 40 to 47 cycles of denaturation at 95 ◦C for 15 s, annealing for 60 s at the
indicated temperatures for each primer (Figure S1), and extension at 60 ◦C for 30 s.

2.8. Tissue Staining with Paraffin-Embedded Sections

Musculus longissimus lumborum was paraffin-embedded and sectioned at a 5-µm
thickness, as described previously [17]. Paraffin sections were deparaffinized with a
lemosol solution (Fujifilm Wako Chemicals, Osaka, Japan). Collagen fiber staining was
performed using a Picro-Sirius Red stain kit (ScyTek Laboratories, Logan, UT, USA).

For tissue immunostaining, deparaffinized sections were activated with an antigen-
retrieval solution (Histo VT one solution; Nacalai Tesque, Kyoto, Japan) at 90 ◦C for 20 min.
After permeabilization with 0.3% Triton-X in PBS (−) for 30 min and inactivation of endoge-
nous peroxidase with 0.3% H2O2 solution for 30 min, the sections were treated overnight
with an antibody diluted with Can Get Signal immunostaining solution A (Toyobo). The
bound antibody was visualized using Histofine Max-Po (Nichirei Biosciences, Tokyo, Japan)
and ImmPACT DAB (Vector Laboratories, Burlingame, CA, USA). Counterstaining was per-
formed with Mayer’s hematoxylin solution (Fujifilm Wako Chemicals), and image analysis
was performed using an all-in-one microscope system (BZ8000; Keyence, Osaka, Japan).

ftp://ftp.ensembl.org/pub/release-99/fasta/homo_sapiens/dna/
ftp://ftp.ensembl.org/pub/release-99/fasta/homo_sapiens/dna/
ftp://ftp.ensembl.org/pub/release-99/gtf/bos_taurus/
ftp://ftp.ensembl.org/pub/release-99/gtf/bos_taurus/
https://sourceforge.net/projects/mev-tm4/
https://sourceforge.net/projects/mev-tm4/
http://www.genome.jp/kegg/
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2.9. Statistical Analysis

The density of protein bands was measured using an image analysis software (Image
J, National Institutes of Health, Bethesda, MD, USA). A multivariate data analysis of the Or-
thogonal Projections to Latent Structures Discriminant Analysis (OPLS-DA) was performed
using the SIMCA14 software (Inforcom, Tokyo, Japan) [15,18]. Statistical significance was
determined at a p < 0.05 according to Student’s t-test with JMP12 (SAS Institute Japan,
Tokyo, Japan) and Excel 2019 (Microsoft Japan, Tokyo, Japan). The q-values for the GO and
KEGG analyses were performed using DAVID v.6.8 according to the manual.

3. Results
3.1. RNA-seq Analysis of Subcutaneous Fat and Intramuscular Fat

During the analysis of a small amount of intramuscular fat samples (like marble in
muscle) collected from Japanese Black cattle, we also collected subcutaneous fat from
the same cattle to compare with intramuscular fat (Figure 1a). We found no difference
in the appearance of adipocytes between subcutaneous and intramuscular fat tissues,
although the size of adipocytes was significantly smaller (p < 0.05) in intramuscular fat
(Figure 1b,c). RNA-seq analysis following the establishment of a sequence library revealed
a mean total read count of 149,293,058 reads for subcutaneous fat and 167,613,200 reads
for intramuscular fat. The read counts mapped to the genetic database ere 131,204,412
for subcutaneous fat (87.9% of total reads) and 147,205,196 reads for intramuscular fat
(87.8%). The data had a primary map count of 131,271,893 reads, a secondary map count of
7,932,911 reads, and an average insert size of 224 bp.
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Figure 1. Overview of fat samples and RNA-seq analysis. (a) Image of subcutaneous fat and intramuscular fat in the
sternocleidomastoid muscle. Arrows indicate subcutaneous fat, and arrowheads indicate intramuscular fat. (b) Phase-
contrast microscopic images of each adipocyte. Scale bar, 100 µm. (c) Mean value of the cross-sectional area of adipocytes in
each fat tissue (± standard deviation, * p < 0.05). (d) Summary of RNA-seq analysis. We analyzed the intramuscular and
subcutaneous fat of four Japanese Black cattle by RNA-seq analysis.
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After extracting expressed genes from the primary analysis data, a total of 27,606 genes
were detected. Gene expression levels were normalized as TPM, and false-positive genes
were removed. To comprehensively view gene expression in each fat tissue, we performed
a multivariate analysis of the data and displayed the genes as a visual plot (Figure 2). Actin
alpha 2 (ACTA2), tropomyosin 2 (TPM2), and myosin heavy chain 11 (MYH11) are typical
genes of muscle fibers, predicted as contaminants, and removed from the analytical data.
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Figure 2. Comparison of gene expression between intramuscular fat and subcutaneous fat. S-shaped plot for the OPLS-DA
model, which was calculated based on RNA-seq data. The horizontal axis p is a variable that indicates the measure of
correlation obtained with OPLS-DA analysis. The vertical axis p (corr) is an abbreviation for p scaled by the correlation
coefficient, which is the loading of each variable scaled as a correlation coefficient and standardized in the range of −1
to +1. P (corr) indicates the relationship between intramuscular fat or subcutaneous fat, either positive or negative. The
plot shows variable genes in subcutaneous fat (left) and intramuscular fat (right). The names of highly expressed genes
in adipocytes are in black, and those of highly expressed genes in muscle fibers are in gray. R2X = 0.228, and scaling sets
par type. The scores for the OPLS-DA model were R2 (cum) = 0.969 and Q2 (cum) = 0.788. The different colors in the plot
indicate differences in density. The density bar on the right shows the color of the degree of density of the plot.

We then compared gene expression between intramuscular fat and subcutaneous
fat. First, the TPM values were log-transformed and then compared between the two
groups of subcutaneous fat and intramuscular fat, and the genes that obtained positive
or negative significant differences by t-test were extracted as DEGs. The extraction of
DEGs revealed 1625 genes expressed at significantly higher levels in intramuscular fat
than in subcutaneous fat and 130 genes showing higher expression in subcutaneous fat
than intramuscular fat (p < 0.05). We first investigated genes showing significantly higher
expression in intramuscular fat than in subcutaneous fat. Of the 1625 DEGs in intramuscular
fat, 65 were identified as highly expressed genes (count value ≥ 1000, the expression ratio
of int/sub ≥ 2; p < 0.05; Figure 3a) and 25 as specifically expressed genes (count value ≥ 16,
expression ratio of int/sub ≥ 4; p < 0.05; Figure 3b). Of these, we identified eight new
genes, namely carboxypeptidase E (CPE), tenascin C (TNC), transgelin (TAGLN), collagen
type IV alpha 5 (COL4A5), cysteine and glycine-rich protein 2 (CSRP2), PDZ and LIM
domain 3 (PDLIM3), phosphatase 1 regulatory inhibitor subunit 14A (PPP1R14A), and
regulator of calcineurin 2 (RCAN2), as highly and specifically expressed genes (Figure 3c).
The 65 highly expressed genes and 25 specifically expressed genes are listed in Figure S2,
and the top 15 highly expressed genes in intramuscular fat are shown in Figure S3.

3.2. Verification of Characteristic Genes Expressed in Intramuscular Fat

We then verified the reliability of the expression data using qPCR. We verified the
eight genes identified as highly expressed in intramuscular fat, and significant differences
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were confirmed for six genes (Figure 4). The reproducibility of the gene expression was
confirmed for each gene.
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Figure 3. Analysis of gene expression in subcutaneous and intramuscular fat tissues. (a) Heat map showing 65 genes highly
expressed in intramuscular fat (count value ≥ 1000, the expression ratio of int/sub ≥ 2; p < 0.05). (b) Heat map showing
25 genes specifically expressed in intramuscular fat and with a low expression level (count value ≥ 16, expression ratio of
int/sub ≥ 4; p < 0.05). The expression ratio is shown with upregulated genes in red and downregulated genes in green.
(c) Venn diagram showing the number of highly and specifically expressed genes in intramuscular fat.

3.3. Expression Analysis of the COL4 Isoform

Intramuscular fat comprises adipocytes that ectopically proliferate and differentiate
around the epimysium, perimysium, and endomysium [19] (Figure 5a). In the present
study, we focused on COL4A5. COL4A has six different isoforms, the chains of which form
heterotrimers to construct a complex collagen network in the basement membrane [20].
Comparison of the expression of the six isoforms revealed COL4A5 and COL4A6 as
showing the highest expression in intramuscular fat relative to subcutaneous fat (Figure 5b),
with this confirmed by qPCR (Figure S4). We then confirmed COL4A isoform expression
in the basement membrane around intramuscular fat by tissue immunostaining. Unlike
other collagens, COL4A is not expressed in muscle tissue. We observed that COL4A
isoforms were unevenly distributed in the perimysium and endomysium around the
muscle fibers (Figure 5c). COL4A5 and COL4A6 were only distributed in the thickened
basement membrane around adipocytes in the endomysium. By contrast, COL4A1 and
COL4A2 abundantly localized in the perimysium, whereas COL4A3 and COL4A4 (data
not shown) were detected at low levels in the endomysium.
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Figure 5. A network of COL4A in the basement membrane of intramuscular fat. (a) Paraffin-
embedded sections were prepared from the musculus longissimus lumborum of Japanese Black
cattle. Picro-Sirius Red staining showing collagen (red) and muscle (yellow) fibers. Arrow indicates
intramuscular adipocytes. The red arrow indicates the large intramuscular fat around the epimysium.
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Blue arrows indicate relatively thin intramuscular fat around the perimysium. Black arrows indicate
the micro-intramuscular fat around the endomysium in the muscle bundle. Black arrowheads
indicate the epimysium, white arrowheads indicate the perimysium, and gray arrowheads indicate
the thickened basement membrane of the endomysium. Size bar, 500 µm. (b) Comparative analysis
of COL4A expression by TPM values. Graphs show the TPM values obtained by RNA-seq analysis.
Data represent the mean ± standard error (n = 3). ** p < 0.01, (c) Tissue immunostaining for COL4A
family proteins in paraffin sections of muscle tissue from Japanese Black cattle. DAB staining (brown)
was performed using primary antibodies targeting specific isoforms, with hematoxylin used for
counterstaining. White arrowheads indicate perimysium, and gray arrowheads indicate endomysium.
Size bar, 100 µm. Int, intramuscular adipocytes; M, muscle tissue.

3.4. Pathway Analysis of Differentially Expressed Genes

We then evaluated the intracellular functions of DEGs using a KEGG enrichment anal-
ysis and a GO analysis. KEGG results showed the characteristic pathways for intramuscular
and subcutaneous fat (Figure 6). DEGs in intramuscular fat were significantly associated
with 20 KEGG pathways, including focal adhesions (34 genes; p = 0.0004), pathways in
cancer (50 genes; p = 0.0065), PI3K-Akt signaling (42 genes; p = 0.0231), MAPK signaling
(32 genes; p = 0.0316), Ras signaling (29 genes; p = 0.0493), and transforming growth factor
(TGF)-β signaling (13 genes; p = 0.0518). By contrast, DEGs in subcutaneous fat were
associated with cellular metabolism pathways, including metabolic pathways (38 genes;
p = 0.0001), lysosomes (10 genes; p = 0.0002), and the regulation of adipocyte lipolysis
(7 genes; p = 0.0002).
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Figure 6. Pathway analysis of DEGs in intramuscular fat. KEGG enrichment analysis revealed significant pathways
for the 1625 DEGs in subcutaneous fat and intramuscular fat. The X-axis represents the p-value obtained using the
Benjamini–Hochberg test.

To further narrow down the genes involved in intramuscular fat formation, we an-
alyzed the cellular functions of these genes using GO (Figure 7). A total of 1625 DEGs
were significantly associated with ECM binding (3.8%; q-value, 2.60) and zinc ion binding
(10.8%; q-value, 2.05) as a molecular function. Intramuscular fat was also associated with
circulatory system development (24.6%; q-value, 5.12), actin cytoskeleton organization
(16.9%; q-value, 3.44), cell surface receptor signaling (30.7%; q-value, 3.19), and cell migra-
tion (20.0%; q-value, 2.78) among biological processes. GO analysis revealed that the DEGs
of intramuscular fat were associated with ECM binding, cell-cell adhesion, angioplasty,
and receptor signal. These findings suggest that the surrounding environment influences
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intramuscular fat accumulation. The intracellular function of intramuscular adipocytes
resembles that of infiltrating cells and tumors in response to the microenvironment [21].
This unique cellular environment is seemingly involved in intramuscular fat accumulation.
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Figure 7. Functional analysis of DEGs in intramuscular fat. GO analysis revealed significant functions for 1625 DEGs in
intramuscular fat. The graph shows GO terms in the categories of biological processes and molecular function. The X-axes
represent the percentage of genes that matched the GO term. The clustered line plots represent the q-values obtained by
Fisher’s exact test and relative to the other terms.

3.5. Analysis of COL4-Related Cellular Signals in Intramuscular Fat

We hypothesized that the ECM of the basement membrane contributes to intramus-
cular fat formation. TGF-β, integrins, and cell migration factors represent ECM-related
signals (Table 1). TGF-β is a growth factor that induces COL4A secretion in connective
tissue [22]. TGFB2 and TGFB3 were highly expressed in intramuscular fat tissue compared
to subcutaneous fat tissue, whereas TGFB1 was expressed at a lower level. SMAD, a major
transcription factor that functions in the canonical pathway of TGF-β, showed similar
expression levels between subcutaneous and intramuscular fat tissues. However, the ex-
pression levels of SMAD7, CHRD, and TGIF1, which are regulators of TGF-β signaling, are
significantly differed between tissues. Furthermore, heterodimers, namely ITGA2, ITGB1,
and ITGB6, were significantly highly expressed in intramuscular fat compared to subcuta-
neous fat tissue. The expression of heterodimers, integrin α (ITGA) and integrin β (ITGB),
ITGA2, ITGB1, and ITGB6, was significantly higher in intramuscular compared to subcuta-
neous fat tissue. By contrast, ITGA6, which encodes the major ITGA in adipocytes [23],
was highly expressed in subcutaneous fat tissue. Concerning cell migration factors, CXCL5,
FGF9, and FGF13 showed significantly higher expression in intramuscular fat relative
to subcutaneous fat, whereas CXCR4, which is a receptor for CXCL5, showed similar
expression levels between subcutaneous and intramuscular fat tissues.
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Table 1. List of differentially expressed genes related to the extracellular matrix.

No. Gene Name
Mean of a TPM Value Ratio t-Test

Subcutaneous
Fat

Intramuscular
Fat (Int/Sub) (p Vales)

TGF-β signal

1 TGFB2 Transforming growth factor beta 2 24.90 30.87 1.24 0.010 *

2 TGFB3 Transforming growth factor beta 3 5.34 17.70 3.32 0.038 *

3 TGIF1 TGFB induced factor homeobox 26.85 36.77 1.37 0.016 *

4 SMAD7 SMAD family member 7 3.69 6.27 1.70 0.011 *

5 CHRD Chordin 4.68 6.82 1.46 0.011 *

6 TGFBR1 Transforming growth factor beta receptor 1 44.31 50.05 1.13 0.113

7 TGFB1 Transforming growth factor beta 1 98.20 61.95 0.63 0.056

8 SMAD2 SMAD family member 2 78.02 85.55 1.10 0.289

9 SMAD3 SMAD family member 3 15.73 16.63 1.06 0.826

10 SMAD4 SMAD family member 4 47.21 51.80 1.10 0.371

11 SMAD6 SMAD family member 6 6.05 8.37 1.38 0.209

Integrin

12 ITGA2 Integrin subunit alpha 2 0.56 1.32 2.36 0.044 *

13 ITGB1 Integrin subunit beta 1 528.35 710.96 1.35 0.029 *

14 ITGB6 Integrin subunit beta 6 0.02 0.45 25.52 0.017 *

15 ITGA6 Integrin subunit alpha 6 211.64 186.69 0.88 0.521

Cell migration factor

16 CXCL5 Chemokine (C-X-C motif) ligand 5 0.52 2.19 4.23 0.046 *

17 CXCR4 C-X-C motif chemokine receptor 4 9.56 22.76 2.38 0.087

18 FGF9 Fibroblast growth factor 9 1.89 3.11 1.65 0.036 *

19 FGF13 Fibroblast growth factor 13 1.07 1.88 1.75 0.040 *

Regulators of small GTPase

20 RASGRP3 Ras guanyl releasing protein 3 9.02 16.91 1.87 0.003 **

21 ARHGEF26 Rho guanine nucleotide exchange factor 26 3.96 6.18 1.56 0.022 *

22 ARHGAP10 Rho GTPase activating protein 10 27.56 47.61 1.73 0.025 *

23 ARHGAP24 Rho GTPase activating protein 24 10.02 14.49 1.45 0.046 *

24 DLC3 Deleted in liver cancer 3 (STARD8) 9.32 13.59 1.46 0.041 *
a Data represent the mean transcripts per million (TPM) values (n = 4) relative to the expression levels between intramuscular fat and
subcutaneous fat. * p < 0.05, t-test. ** p < 0.01, t-test.

We then evaluated the Ras signal pathway involving Ras protein, which at acts as a
molecular switch to control various signal transduction pathways. GDP/GTP-exchange
factor (GEF), GTPase activating factor (GAP), and effectors are listed as regulators of
small GTPases [24]. Among GEFs, RASGRP3 and ARHGEF26 were highly expressed in
intramuscular fat relative to subcutaneous fat. For GAP, ARHGAP10 and ARHGEF24 were
highly expressed in intramuscular fat, as were RASSF9 and RASSF10, which are effector
molecules for Ras GTPase.

4. Discussion

Japanese Black cattle are not crossed with other cattle breeds, and their pedigree is
strictly controlled; therefore, the use of Japanese Black cattle in research introduces low
genetic variation. We previously analyzed the metabolite [15] and lipid composition [18] of
intramuscular fat in Japanese Black cattle. In this study, we performed RNA-seq analysis
to explore the key genes involved in the intramuscular fat accumulation of Japanese Black
cattle. Previous studies indicated that comparisons between different cattle breeds tend
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to detect DEGs related to popular adipocyte functions, such as lipid metabolism and
adipogenesis [12]. In the present study, we focused on intramuscular fat formation-related
genes. Therefore, to avoid bias, we collected intramuscular and subcutaneous fat tissues
from the same cattle.

Microscopic observation showed little contamination of other tissues (Figure 1b).
Intramuscular fat is known to comprise a smaller portion of adipocytes than subcuta-
neous fat [25]. We confirmed that the intramuscular fat used in this analysis comprised a
smaller portion of adipocytes than subcutaneous fat (Figure 1c). RNA-seq analysis was
performed on a small sample (100 mg) to avoid contamination with other connective tissues
(Figure 1d). A higher number of DEGs was detected in intramuscular than in subcuta-
neous fat tissues (Figure 2). The muscle-derived myosin and actin genes were detected
by RNA-seq. These genes might be derived from a fragment of muscle tissue attached to
the sample or intramuscular fat-specific cytoskeletal proteins [16]. To render our search
more comprehensive, we explored characteristic genes of intramuscular fat using two
search criteria for genes, high expression and specificity. Of the identified genes, we have
identified eight novel genes highly and specifically expressed in intramuscular fat tissues
from Japanese Black cattle (Figure 3). These eight genes were validated as highly expressed
in intramuscular fat tissue by quantitative PCR assays (Figure 4).

The role of these eight genes in intramuscular fat formation was inferred from their
respective functions. TNC is a high molecular weight glycoprotein that plays an ECM to
stabilize the basement membrane with collagen. Interestingly, TNC is reportedly induced
by obesity-related inflammatory responses in the adipose tissue [26] and tumor microenvi-
ronment [27]. Tenascin has four isoforms, TNC, TNR, TNXB, and TNW, in cattle. In our
RNA-seq data, only TNC was highly detected in intramuscular fat. TAGLN is a TGF-β
inducible gene that functions as an actin cross-linking protein [28]. TAGLN also promotes
cell migration and adipocytic differentiation of human bone marrow-derived stromal stem
cells [29]. CPE acts as an exopeptidase and is involved in the biosynthesis of neuropeptides
and peptide hormones in endocrine tissues and the nervous system. Deficiency in CPE
activity has been linked to diabetes, obesity, and reduced learning ability [30]. Genetic
analyses highlighted that single nucleotide polymorphisms in CPE are associated with
beef quality [31]. Of these eight genes, CPE, TNC, and TAGLN have been detected in the
intramuscular fat of other cattle [32]. These three genes are presumed to be essentially
expressed in intramuscular fat regardless of cattle pedigree.

CSRP2 contains three isoforms (CSRP1, CSRP2, CSRP3). These CSRPs act as tran-
scription factors in the nucleus and promote cell differentiation in various cell types.
CSRP2 expression is reportedly induced by TGF-β [33], an essential gene for epithelial-
mesenchymal conversion [28]. Although CSRP1, CSRP2, and CSRP3 were highly expressed
in intramuscular fat tissue (Figure S2), their detailed function is unknown. RCAN2 is
involved in muscle differentiation and cancer progression [34]. PPP1R14A is a typically
upregulated gene in obesity-related hypertension [35]. PDLIM3 are sarcomere-related
proteins. Of note, PDLIM3 regulates cell-cell adhesion and migration and promotes malig-
nant metastasis [36]. Unlike other collagens, COL4A is a unique collagen isoform in the
basement membrane [37]. COL4A5 forms supramolecular networks with COL4A [20].

Tissue immunostaining showed that COL4A5 colocalized with COL4A6 in the thick-
ened basement membrane of the endomysium (Figure 4). Based on their expression
patterns (Figure 5b), COL4A1 and COL4A2 seemed to contribute to both subcutaneous
and intramuscular fat accumulation, whereas COL4A5 may be involved in the “micro-
intramuscular fat” (Figure 5a). Recently, the specific expression of COL4A5 in the tumor
microenvironment has been reported [38]. COL4A5 expression in the basement membrane
may involve the infiltration and proliferation of ectopic cells, such as intramuscular fat
and tumors.

Next, we investigated the intracellular functions of DEGs in each fat tissue. KEGG
analyses revealed that intramuscular fat is associated with gene pathways related to
cell migration and proliferation (Figure 6). Notably, PI3K-Akt, MAPK, and Ras signaling
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pathway upregulation suggest the activation of downstream membrane receptors and ECM
binding in intramuscular fat tissues. The cellular function associated with intramuscular
fat was consistent with the GO analysis results (Figure 7).

From these results, we focused on the ECM and compared the TPM values of genes
related to TGF-β, cell adhesion, and cell migration factors (Table 1). TGF-β regulates
gene expression by SMAD-mediated signal transduction [39]. TGF-β reportedly induces
CPE, TNC, TAGLN, CSRP2, and COL4A5 expression [28,33,40]. Therefore, it is suggested
that TGF-β/SMAD pathway-mediated promotion of gene transcription might underly
intramuscular fat formation in Japanese Black cattle. Furthermore, ITGA6 and ITGB1, the
subunits of integrin α6β1 that specifically bind to the COL4A5 heterotrimer [20], were
increased in intramuscular fat. The expression of cell migration factors CXCL5, FGF9,
and FGF13, was also increased in intramuscular fat tissue (Table 1). Therefore, in the
intramuscular fat tissue, increased cell adhesion to the basement membrane may promote
preadipocyte cell migration by increasing ITGB1, CXCL5, FGF9, and FGF13 expression.

Surprisingly, cancer-related pathways were significantly associated with intramus-
cular fat tissue (Figure 6), including TGF-β, Wnt-1, Ras, and Rho signaling-related genes
(Figure S5). The TGF-β is known as a non-canonical pathway. This pathway activates
Ras/MAPK signaling and the Rho family signaling of small GTPase in a SMAD-independent
manner [40]. These small GTPase-mediated TGF-β signaling reportedly promote cell mi-
gration and differentiation in various inflammatory tissues and tumors [39]. These findings
suggest that the cell function specific to intramuscular fat accumulation might be mediated
by TGF-β. Therefore, TGF-β is considered a pivotal gene in intramuscular fat forma-
tion in Japanese Black cattle. Comparison between two groups by DEGseq2 is shown in
(Figure S6).

The TPM levels did not differ between intramuscular and subcutaneous fat tissues in
the Ras and Rho family of small GTPase. Many previous studies have shown that small
GTPase activity is specifically regulated during signal transduction [24,41]. Therefore, we
compared the expression of key regulators between intramuscular and subcutaneous fat
tissues. RNA-seq analyses detected 66 genes as regulators of the Ras or Rho family of small
GTPases. Of these, RASGRP3 and ARHGEF26 were significantly more highly expressed
in intramuscular fat tissue than subcutaneous fat tissue (Table 1). RASGRP3 activates
the Ras signals and promotes invasion and cell migration [42]. ARHGEF26 activates the
Rho family of RhoG and also regulates cancer cell migration [43]. Besides, ARHGAP10,
ARHGAP24 [44], and DLC3, which act as GAPs for the Rho family [45], were highly
expressed in intramuscular fat. Moreover, ARHGEF33 expression was significantly lower
in intramuscular fat tissue than subcutaneous fat tissue. Differential expression of GEFs
and GAPs has been widely reported in tumors. These regulators are reportedly sufficient
to regulate small GTPase activities by altering their expression levels [46]. These regulators
may also regulate the small GTPase activities required for the proliferation, differentiation
and maintenance of adipocytes around the basement membrane of the endomysium that
compose the intramuscular fat.

5. Conclusions

In this study, our RNA-seq analysis led to identifying eight genes highly and specifi-
cally expressed in the intramuscular fat of Japanese Black cattle. Among them, COL4A5
was found to be highly expressed in the basement membrane around intramuscular fat.
Pathway analysis also revealed that cell adhesion, cell proliferation, and cancer pathways
are involved in intramuscular fat formation. In addition, the relationship between TGF-β
signaling and the regulators of Ras and Rho families are seemingly involved in intramuscu-
lar fat accumulation. These genes might be used as molecular markers to better understand
intramuscular fat formation [15].
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