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Abstract

Background: SNPs are informative to estimate genomic breed composition (GBC) of individual animals, but
selected SNPs for this purpose were not made available in the commercial bovine SNP chips prior to the present
study. The primary objective of the present study was to select five common SNP panels for estimating GBC of
individual animals initially involving 10 cattle breeds (two dairy breeds and eight beef breeds). The performance of
the five common SNP panels was evaluated based on admixture model and linear regression model, respectively.
Finally, the downstream implication of GBC on genomic prediction accuracies was investigated and discussed in a
Santa Gertrudis cattle population.

Results: There were 15,708 common SNPs across five currently-available commercial bovine SNP chips. From this
set, four subsets (1,000, 3,000, 5,000, and 10,000 SNPs) were selected by maximizing average Euclidean distance
(AED) of SNP allelic frequencies among the ten cattle breeds. For 198 animals presented as Akaushi, estimated GBC
of the Akaushi breed (GBCA) based on the admixture model agreed very well among the five SNP panels,
identifying 166 animals with GBCA = 1. Using the same SNP panels, the linear regression approach reported fewer
animals with GBCA = 1. Nevertheless, estimated GBCA using both models were highly correlated (r = 0.953 to 0.992).
In the genomic prediction of a Santa Gertrudis population (and crosses), the results showed that the predictability
of molecular breeding values using SNP effects obtained from 1,225 animals with no less than 0.90 GBC of Santa
Gertrudis (GBCSG) decreased on crossbred animals with lower GBCSG.

Conclusions: Of the two statistical models used to compute GBC, the admixture model gave more consistent
results among the five selected SNP panels than the linear regression model. The availability of these common SNP
panels facilitates identification and estimation of breed compositions using currently-available bovine SNP chips. In
view of utility, the 1 K panel is the most cost effective and it is convenient to be included as add-on content in
future development of bovine SNP chips, whereas the 10 K and 16 K SNP panels can be more resourceful if used
independently for imputation to intermediate or high-density genotypes.
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Background
Estimation of breed identification or composition is very
useful in a variety of situations. In farm animals, for
example, breed registries are used to record and main-
tain pedigrees of animals with certain conformational,
performance and coat color characteristics that are ap-
proved for registry within that breed [1]. For cross-bred
animals, knowing the admixture proportions of an indi-
vidual is helpful to estimate heterozygosity, understand
the breeding history of the population to which an ani-
mal belongs, and make management decisions for cross-
breeding programs [2, 3]. In research, breed information
is utilized for quality control of samples, including verifi-
cation of sample breed identifications and exclusion of
samples that do not belong to specific breeds. Validation
of genetic relationships of individuals is crucial to
control the rate of false associations in disease associ-
ation studies by avoiding or correcting for population
stratifications [4, 5].
Genomic selection has emerged as a powerful tool for

genetic improvement of farm animals [6]. Genomic
selection is desirable for early in life selection and selec-
tion on traits which are difficult or expensive to meas-
ure. So far, genomic evaluations primarily have been
conducted within breeds [7, 8], but cross-breed evalua-
tions have also been addressed [9, 10]. In the US Hol-
stein evaluation, for example, breed check markers are
used to validate animals of Holstein breed, excluding
crossbred animals because the genomic prediction
system developed in purebred Holstein animals does not
provide sufficient genomic prediction accuracy in cross-
bred animals [11]. On the other hand, there has been
work indicating that prediction of crossbred genomic
merit could be improved by calculating direct genomic
values according to weighted SNP effects from each of
the contributing breeds, with the weights of SNP effects
being each animal’s genomic composition of these
breeds [12].
Ancestry and breed origins were historically estimated

using microsatellite markers [13, 14] and recently using
SNPs [15–17] and sequence data [18, 19]. Arguably,
DNA markers are accurate to estimate genomic breed
composition (GBC) of animals because they are capable
of measuring realized parental contributions at the
genomic level [20] and therefore can help correct pedi-
gree errors and even estimate kinships when pedigree
data are incomplete or missing [12]. From a genetic per-
spective, animal breeds differ in SNP allele frequencies
at hundreds and thousands of loci due to domestication,
selection, and genetic drift [21]. In reality, an animal
breed was formed through either natural adaptation to
the environment, selective breeding, or a combination of
the two, and each breed has its unique genetic features
and therefore appearance (phenotypes), behavior, and/or

other characteristics that distinguish it from other
breeds. Through SNP genotyping, for example, individ-
ual animals can be grouped into genetic clusters (breeds)
according to their patterns of multiple-loci genotypes (or
haplotypes). For individuals whose ancestors originated
in different populations, and those which are admixed,
their genetic composition exhibits multiple ancestries
associated with multiple different genetic clusters or
populations, which can be described by admixture
models [22–24]. Alternatively, GBC can be estimated
using a linear regression model, in which discrete ran-
dom variables corresponding to counts of certain alleles
of reference SNPs across the genome are regressed on the
allele frequencies of each reference SNP in a number of
known breeds [15]. This latter approach has been used to
estimate breed composition in pigs [1] and cattle [12, 17].
In the present study, five SNP panels were derived for

estimating GBC amongst 10 cattle breeds, which con-
sisted of 1,000 (1 K), 3,000 (3 K), 5,000 (5 K), 10,000
(10 K), and 15,708 (16 K) SNPs, respectively. More
breeds will be included as their genotype data become
available. The 16 K consisted of all common, informative
SNPs across five historical and currently available SNP
chips, and the remaining four panels were selected
subsets from 16 K by maximizing the average Euclidean
distance of allele frequencies among the ten cattle
breeds. With these five selected SNP panels, their com-
parative performance in estimation of GBC was evalu-
ated in an Akaushi population, based on two statistical
models (namely, admixture and linear regression). Fi-
nally, downstream implication on genomic selection
accuracies was investigated in a population of purebred
and crossbred Santa Gertrudis cattle by calibrating SNP
effects only on 1,225 Santa Gertrudis cattle with GBC of
Santa Gertrudis (GBCSG) being equal to greater than
0.90 and validated on this set of animals and on two sets
with lower GBCSG.

Methods
Genotype data, reference SNPs, and reference animals
Genotype data
The datasets included a total of 29,609 animals of ten
cattle breeds, each genotyped on the GeneSeek Genomic
Profiler (GGP) bovine 50 K version 1 SNP chip (49,463
SNPs) or GGP LD version 4 SNP chip (40,660 SNPs)
(Neogen GeneSeek Operations, Lincoln, NE). Approxi-
mately 53% of the animals were from two dairy breeds
(Holstein and Jersey) and the remaining 47% were from
eight beef cattle breeds (Akaushi, Angus, Beefmaster,
Red Angus, Brangus, Hereford, Santa Gertrudis, and
Wagyu). Among the beef breeds, Akaushi (Japanese
Brown) cattle and Wagyu (Japanese Black) cattle were
originally developed in Japan and are well known for
their meat quality [25]; Beefmaster was developed in the
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early 1930s by crossing Hereford cows and Shorthorn
cows with Brahman bulls [26]; Santa Gertrudis cattle are
a beef breed developed in southern Texas, USA, by mat-
ing Brahman bulls with beef Shorthorn cows, with the
final composition being about three-eighths Brahman
and five-eighths Shorthorn [27]. Average minor allele
frequencies (MAF) of all SNPs on the genotyping SNP
chip platform across these ten populations varied from
0.188 (Wagyu) to 0.305 (Beefmaster). Descriptive statis-
tics of these genotype data by breed are shown in Table 1.
Overall, the accuracy of estimated allele frequencies in-
creased with the sample size. Of the ten breeds, some
had large sample size, such as Holstein and Jersey cattle,
but the sample sizes for some breeds (such as Akaushi
and Santa Gertrudis) were relatively small. For the three
composite breeds (Brangus, Beefmaster, and Santa Ger-
trudis), two of their founder breeds (Brahman and Short-
horn) of the composite cattle were not included in the
reference breeds, because genotypes for those breeds
were not available at the time at the time of this study.

Selection of reference SNPs
Five panels of reference SNPs were made available. Each
panel consisted of common SNPs across five historical
or currently-used commercial bovine SNP chips, namely,
Illumina Bovine HD (777 K) chip, GGP UHD (150 K)
SNP chip, GGP HD (80 K) SNP chip, GGP 50 K version
1 SNP chip, and GGP LD version 4 (40 K) SNP chip.
Hulsegge et al. (2013) compared three statistics as the
criteria for selecting SNPs [16]: 1) delta (the absolute al-
lele frequency difference between two populations), 2)
Wright’s FST, 3) and Weir and Cockerham’s FST. The
results of Hulsegge et al. (2013) showed very small dif-
ferences amongst these three statistics. In the present
study, we used average Euclidean distance (AED) of al-
lele frequencies among the breeds, which was equivalent
to delta when measured on a single SNP involving only

two populations, though mathematically formulated dif-
ferently. With the number of populations (T) > 2, AED
was calculated by the Pythagorean formula and then av-
eraged across all possibly unique breed pairs,

AEDk ¼ 1

2
T

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXT

j¼1

XT

j0 > j
f jk− f j0k

� �2
r

ð1Þ

where fjk is the frequency of an allele of the k-th SNP in

the j-th breed, and 2
T

� �
indicates all unique pairs of

combinations of the T breeds taken 2 breeds at a time
without repetition. Note that fjk can refer to either allele,
but it needs to be used consistently. In the present study
it refers to the second allele. For example, if SNP geno-
types are coded as 0 (AA), 1 (AB) and 2 (BB), then fjk re-
fers to the frequency of allele B.
Prior to SNP selection, there were 15,708 SNPs (iden-

tified as 16 K) in common across the five commercial
bovine SNP chips evaluated in this study. The 16 K SNP
set are not random, but initially taken as the common
set from which four subsets of SNPs, namely 1 K, 3 K,
5 K, and 10 K SNPs, were selected. The SNPs for each
subset were selected by maximizing AED of SNP allelic
frequencies among the ten breeds, given their respective
panel sizes.

Selection of reference animals
In the present study, reference animals for each breed
were selected using the 1 K SNP panel because the
model is parsimonious and the results were very similar
across each of the five SNP panels. The likelihood that
an animal belonged to a specific breed was computed as-
suming independent multinomial distributions of its ge-
notypes of these SNPs. Consider one SNP locus with
three genotypes, and denote fkj(g) to be the frequency of

Table 1 Descriptive statistics of genotype data for 29,609 animals used in the present study

Cattle Breed Number of Genotyped Animals a Number of SNPs Average MAF Mean (SD) Breed Type

Holstein 8,905 (8,863) 49,463 0.295 (0.152) Dairy

Jersey 6,911 (6,860) 49,463 0.256 (0.158) Dairy

Akaushi 198 (167) 49,463 0.243 (0.158) Beef

Angus 4,713 (4,672) 49,463 0.303 (0.152) Beef

BM 608 (583) 49,463 0.305 (0.142) Beef

Brangus 1,819 (1,770) 40,660 0.238 (0.161) Beef

Hereford 2,423 (2,412) 49,463 0.270 (0.150) Beef

RA 2,229 (2,158) 49,463 0.300 (0.151) Beef

SG 297 (291) 49,463 0.301 (0.140) Beef

Wagyu 1,506 (1,506) 40,660 0.188 (0.164) Beef

BM Beefmaster, RA Red Angus, SG Santa Gertrudis, MAF minor allele frequency, SD standard deviation of MAF
aIn the brackets are the number of animals in the reference set for each breed, after removing outliers
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animals having genotype g, where g = AA, AB, or BB, re-
spectively, of SNP k in the j-th population. Let x be a
genotype of SNP k observed on animal i. Then, based
this SNP only, the likelihood that this animal is a mem-
ber of population j is given by:

Lijk ¼
Y

g¼AA;AB;BB
f
1x¼g

jk xð Þ
� �

ð2Þ

where 1x = g is an indicator variable, which has a value of
1 if x = g, or 0 otherwise.
For instance, let this animal have AA genotype for

SNP k. Then, formula (2) is computed to be:

Lijk ¼ f AAð Þ1 � f ABð Þ0 � f BBð Þ0� � ¼ f AA ð3Þ

Thus, when only one SNP is considered, the probabil-
ity that an individual animal belongs to a certain breed,
given its observed genotype of this SNP, is equal to the
frequency of that genotype in the reference population
of that breed.

Now, consider k = 1, 2, …, M SNPs and let lij ¼ ð−2Þ 1
M

log
QM

k¼1ðLijkÞ, which is computed as follows:

lij ¼ −2ð Þ 1
M

XM

k¼1
log

Y
g¼AA;AB;BB

f
1x¼g

jk xð Þ
� �� �

ð4Þ

For simplicity, the above is denoted by -2logLikehood
hereafter. To avoid calculating the logarithm on zero
counts of genotypes, each genotype frequency was
re-computed based on allele frequencies estimated based
on a Bayesian Binomial model. Assume a conjugate Beta
prior for q, that is, p(q) = Beta(α, β), where q is the fre-
quency of say allele B, and α and β are hyper-parameters
in the prior distribution, the posterior distribution of q is
also a Beta distribution function:

qjx;N∼Beta 2nBB þ nAB þ a; 2nAA þ nAB þ βð Þ ð5Þ

where N = 2(nAA + nAB + nBB). Denote q̂ to be the poster-
ior mean of q. Then, assuming Hardy-Weinberg equilib-
rium, the frequencies of genotypes AA, AB, and BB,
respectively, were given as follows:

f AA ¼ 1−q̂ð Þ2 ¼ 1−
2nBB þ nAB þ a

2 nAA þ nAB þ nBBð Þ þ aþ β

� �2

¼ 2nAA þ nAB þ β
2 nAA þ nAB þ nBBð Þ þ aþ β

� �2

ð6Þ

f AB ¼ 2� q̂ 1−q̂ð Þ ¼ 2� 2nBB þ nAB þ a
2 nAA þ nAB þ nBBð Þ þ aþ β

� 1−
2nBB þ nAB þ a

2 nAA þ nAB þ nBBð Þ þ aþ β

� �

¼ 2� 2nBB þ nAB þ a
2 nAA þ nAB þ nBBð Þ þ aþ β

� 2nAA þ nAB þ β
2 nAA þ nAB þ nBBð Þ þ aþ β

� �

ð7Þ

f BB ¼ q̂2 ¼ 2nBB þ nAB þ a
2 nAA þ nAB þ nBBð Þ þ aþ β

� �2

ð8Þ

Each reference animal had a value of lij which was
smaller than a pre-defined cutoff, lα, where, for example,
lα = 0.99 represented the 99% quantile of lij values. After
removing outliers for each breed (described later), allele
frequencies of the reference SNP panels were
re-computed using reference animals only and the
updated allele frequencies of reference SNPs were used
in the estimation of GBC. Note that the above were il-
lustrated using the AB genotype notation. The same
principles apply to the ACGT genotype notation as well.

Estimation of genomic breed composition
Linear regression model
The linear regression approach estimated GBC for each
animal by regressing discrete random variables (geno-
types of this animal) corresponding to counts of certain
alleles of reference SNPs across the genome on the cor-
responding allele frequencies of each reference SNP in a
number of reference populations [15, 17]. Let y be an
M × 1 vector of genotypes for each animal, where M is
the number of reference SNPs, and genotypes were
coded as the number of B alleles of each reference SNP
observed on each animal. Let F = {fkj} be an M×T matrix,
where fkj was the frequency of B allele of SNP k pertaining
to population j, and T is the number of breeds. Then,
GBC was estimated based on the following linear model:

y¼1μþFbþe ð9Þ
where μ is the overall mean, and b is a T × 1 vector of
regression coefficients, each pertaining to a breed, and e
is a residual term. Note that the sum of regression coef-
ficients across the T breeds computed for each animal
did not equal to 1, and adjustment of these regression
coefficients were needed to restrict the sum of regres-
sion coefficients per animal to be 1. VanRaden and
Cooper (2015) proposed a method to adjust breed re-
gression coefficients [12], but their method is not
straightforward to follow. In this study, we proposed an
approximate approach, which was simple yet effective,
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as follows. For each animal, all negative regression coef-
ficients, if any, were replaced by zeros. Then, for each
animal, the GBC of a breed was estimated to be the ratio
of that breed regression coefficient over the sum of the
regression coefficients across all m breeds.

Admixture model
Given allele frequencies for a number of SNPs which
had been estimated for each reference breed, an individ-
ual’s genotypes at these loci was modeled as an admix-
ture of multiple breeds [18]. The admixture coefficients
of the T breeds, computed for each animal, corre-
sponded to the fractions of the individual’s genome
which was derived from each reference breed, and they
provided estimates of GBC of the T breeds for each
animal. In the admixture model, the value of each ad-
mixture coefficient was between 0 and 1, and the sum of
admixture coefficients (GBC) computed for each animal
is always 1 under the assumption of 100% genetic contri-
butions by the T known breeds to this individual animal.
For a given animal, if the admixture coefficient of a sin-
gle reference breed was 1 (or close to 1), then this ani-
mal was identified as a purebred animal of that breed.
Consider an individual, say i, with observed genotype

for a SNP, say k. Let A and B be the two alleles of this
SNP. There were three possible genotypes: AA, AB and
BB, respectively. Assuming Hardy-Weinberg equilib-
rium, the probability of observing each genotype on this
animal were given as follows:

Pr gik jqik
� � ¼ 1−qikð Þ2 gik ¼ 0 AAð Þ

2qik 1−qikð Þ gik ¼ 1 ABð Þ
q2ik gik ¼ 2 BBð Þ

8<
:

ð10Þ
In the above, qik was the weighted frequency of allele B

of the k-th SNP, pertaining to the admixture of the i-th in-

dividual, and its quantity was given by qik ¼
PT

j¼1wij f jk ,

where wij was an weight of the j-th breed contributing to
the admixture of the i-th individual, and fjk was the allele
B frequency of the k-th SNP in the j-th reference breed.
Denote wi ¼ ðwi1 wi2 … wiT Þ to be a vector of the

weights of T breeds, and g i ¼ gi1 gi2 … giMð Þ be a
vector of observed genotypes of the M reference SNPs,
both pertaining to individual i. Then, the log-likelihood
pertaining to this individual was given by the following:

L wið Þ ¼
XM

k¼1
ln Pr gik

		qik� �� �

¼
XM

k¼1
gik ln qikð Þ þ 2−gik

� �
ln 1−qikð Þ

h i
þ C

ð11Þ
where C was a constant. Note that the above assumes
that all SNPs were independent or in linkage equilibrium

with each other, which might not hold for high-density
SNPs. But this assumption was taken to be approximate
for low density SNP panels. A practical solution to ac-
commodate this assumption would be to prune SNPs to
reduce the linkage disequilibrium (LD) between the
markers [16]. Given SNP allele frequencies for the T ref-
erence breeds and genotypes of these SNPs for a test
animal, say i, the solutions of breed admixture coeffi-
cients for this animal is obtained by maximizing L(wi),
under the constraints wij ≥ 0 and

PT
j¼1wij ¼ 1.

A variety of optimization methods are available for es-
timating the above admixture coefficients. Newton’s
method involves the manipulation and inversion of a
possibly large matrix, which can be computationally
intensive [24]. The EM algorithm [28] has been imple-
mented in some relevant software packages, such as
FRAPPE [23], but this algorithm has slow convergence.
We used the Broyden-Fletcher-Goldfarb-Shanno (BFGS)
method [18] to optimize likelihood function (11). The
BFGS algorithm is a popular quasi-Newton method for
solving non-linear optimization problems, which utilizes
the first derivatives of the likelihood function and approxi-
mates the Hessian matrix of the second derivatives [29].
Computationally, an iterative approach was used to

find a parsimonious set of GBC values for an individual
by iteratively removing breed(s) for which a nonzero
admixture coefficient does not improve the model fitting
significantly [18]. This procedure was analogous to back-
wards elimination variable selection using the likelihood
ratio statistic. Briefly, this approach proceeded as fol-
lows: (1) Calculate the maximum likelihood estimate for
the vector of admixture coefficients (wi); (2) For each
breed, say j, with a non-zero admixture coefficient,
calculate δij = Lmax − L−j obtained by calculating the
maximum likelihood fit with the j-th admixture coeffi-
cient constrained to be 0; (3) Determine the breed with
the smallest value of δij; (4) Set for admixture coefficient
wij to be 0 if δij< τ, where τ was a threshold based on
the likelihood ratio test; Repeated Steps 2–4 until the
changes in the likelihood was acceptably minimized.

Impact on genomic prediction
GBC were computed for 1424 cattle putatively presented
as Santa Gertrudis. These animals were not included in
the reference set to define the Santa Gertrudis breed
allele frequencies. Based on the density plot of calculated
GBC of Santa Gertrudis for these animals (Additional
file 1: Figure S1), all the animals were assigned into three
groups with varying GBCSG levels: 0 ≤GBCSG < 0.70
(71 cattle), 0.70 ≤GBCSG < 0.90 (128 cattle), and
GBCSG ≥0.90 (1,225 cattle). Animals in the last group
was considered to be purebred.
The phenotypes included expected progeny differences

(EPD) of birth weight (BW), fat thickness (FAT), hot
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carcass weight (HCW), marbling score (MARB), ribeye
area (REA), scrotal Circumference (SC), weaning weight
(WW), maternal weaning weight (MWW), and yearling
weight (YW). Summary statistics of EPDs and accuracies
of EPDs of the nine traits are shown in Table 2. The
mean accuracies of EPD for the nine traits were gener-
ally low, ranging from 0.039 (SC) to 0.297 (WW). The
maximum accuracy of EPDs for the nine traits were
between 0.599 (SC) and 0.887 (WW). These EPDs were
de-regressed following Garrick et al. (2009) [30]. After
data cleaning, molecular EBV (MEBV) was computed to
be the sum of the effects of 37,775 SNPs that each indi-
vidual animal carried. Then, GPA on the nine traits were
measured as correlations between deregressed EBV
(dEBV) and MEBV. In the 1,225 Santa Gertrudis cattle
(GBCSG > 0.90), GPA were evaluated by leave-one-out
cross-validation (LOOCV). Briefly, in the 1,225 animals
with GBCSG ≥0.90, SNP effects were estimated on a set
of 1,224 randomly selected animals (i.e., training set)
and then tested on the remaining individual (i.e. test
set). This procedure rotated 1,225 times such that each
individual was used in the test set once and only once.
In the two groups with lower GBCSG (0 ≤GBCSG <

0.70; 0.75 ≤GBCSG < 0.90), GPA were evaluated with
their MEBV computed by SNP effects estimated previ-
ously from the 1,225 Santa Gertrudis cattle with GBCSG
≥0.90. In a broader sense, this is similar to assessing the
predictability of SNP effects obtained from pure-bred
animals on their crosses or animals mixed from other
breeds, though Santa Gertrudis is itself an established
composite cattle breed.

Results
Reference SNPs
Average Euclidean distance among the ten breeds com-
puted by each of the five SNP panels increased as the
panel size decreased. The AED of reference SNP allele
frequencies were 0.243 (16 K), 0.285 (10 K), 0.319 (5 K),
0.340 (3 K), and 0.377 (1 K), respectively. This trend in-
dicates that maximizing AED have successfully led to
the inclusion of highly informative SNPs in each of the
four selected panels (Fig. 1a-d). For example, a dominat-
ing majority of SNPs in the 1 K panel had AED values
greater than 0.3. In contrast, the unselected 16 K panel
had a considerable number of low-informative SNPs
with close to zero AED among the ten breeds, and a

Table 2 Summary statistics of expected progeny differences (EPD) and accuracies of EPD of nine quantitative traits for 1424 animals
presented as Santa Gertrudis

Trait N Min Q25% Median Q75% Max Mean SD

EPD

BW, lb 1424 −8.411 −0.725 −0.263 0.381 6.742 −0.14 0.992

FAT, in 1424 −0.125 −0.002 0.001 0.002 0.062 0 0.006

HCW, lb 1424 − 35.79 − 4.188 − 1.01 3.795 39.95 0.145 7.041

MARBa 1424 −0.329 − 0.017 0.004 0.012 0.473 −0.004 0.04

MWW, lb 1424 −23.04 −2.051 0.4555 2.783 19.63 0.311 4.393

REA, sq. in 1424 −0.551 −0.041 0.003 0.043 0.647 0.005 0.091

SC, cm 1424 −1.044 −0.069 0.017 0.072 1.24 −0.008 0.152

WW, lb 1424 −32.37 −4.211 −1.118 4.175 46.97 0.235 7.093

YW, lb 1424 −45.82 −5.263 −1 5.62 54.39 0.702 9.901

Accuracy of EPD

BW 1424 0.001 0.049 0.136 0.174 0.852 0.279 0.149

FAT 1424 0.001 0.006 0.023 0.081 0.714 0.097 0.125

HCW 1424 0.001 0.022 0.066 0.099 0.574 0.139 0.099

MARB 1424 0.001 0.003 0.014 0.059 0.628 0.069 0.095

MWW 1424 0.001 0.073 0.161 0.181 0.84 0.269 0.128

REA 1424 0.001 0.01 0.032 0.069 0.595 0.089 0.088

SC 1424 0.001 0.003 0.009 0.051 0.599 0.039 0.097

WW 1424 0.001 0.059 0.158 0.191 0.887 0.297 0.151

YW 1424 0.001 0.034 0.098 0.135 0.714 0.197 0.126

Min minimum value, Median median value (50% quantile), Max maximum value, QX% X% quantile, where X = 25 and 75, respectively, SD standard deviation,
BW birth weight, WW weaning weight, HCW hot carcass weight, MARB marbling score, MWW maternal weaning weight, FAT fat thickness, REA ribeye area,
SC scrotal circumference, YW yearling weight
a4.00 = Slight, 5.00 = Small, 6.00 = Modest, 7.00 = Moderate, 8.00 = Slightly Abundant
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majority of SNPs in the 16 K panel had AED less than
0.3 (Fig. 1e).

Reference animals
The likelihood values of an animal belonging to the refer-
ence breed, computed using each of the five SNP panels
respectively, were highly correlated among the five SNP
panels. In the 198 animals putatively presented as Akaushi,
Pearson correlations of -2logLikelihood values computed
by these five SNP panels varied between 0.994 and 0.999
and the corresponding Spearman rank correlations ranged
from 0.858 to 0.991 (Additional file 7: Table S1). For
example, plots of -2logLikelihood values obtained from
either 1 K or 16 K SNP panels are shown in Additional file
3: Figure S3 with high concordance of computed -2logLike-
lihood values between the two panels.
The 1 K panel was used to select reference animals for

each breed. Animals with -2logLikelihood exceeding a given
cutoff value were excluded from the reference animals for
each breed. These cutoff values differed by breeds, which
were taken based on visual evaluation of the distribution of
-2logLikelihood values of all the animals for each breed.
For examples, plots of the distributions of -2logLikelihood

obtained using the 1 K SNP panel for the 198 animals
presented as Akaushi and the 2,423 animals presented as
Hereford showed the presence of outliers (Fig. 2a and b, re-
spectively). Based on these two graphs, the cutoff value of
-2logLikelihood of 1.5 was used for Akaushi cattle and 2.0
was used for Hereford cattle, which represented a cutoff at
84.34% quantile for Akaushi cattle and a cutoff at 99.53%
quantile for Hereford cattle. The number of reference
animals for each breed, after removing outliers, are listed
parenthetically in Table 1. After finalizing the reference ani-
mal sets, allelic and genotype frequencies of reference SNPs
were re-computed based on selected reference animals.
Hierarchical cluster analysis based on Euclidean dis-

tances of the 1 K SNP allele frequencies among the ten
breeds assigned these ten bovine breeds into four groups
(Fig. 3). The first was the Japanese cattle group, which
included Akaushi and Wagyu. Then, there were two more
beef cattle groups, one consisted of Angus, Red Angus,
and Brangus; the other consisted of Beefmaster, Santa
Gertrudis, and Hereford. These last two beef groups were
distantly related possibly because they shared common
remote ancestries. For example, the Brangus breed was
developed to utilize the superior traits of Angus and

Fig. 1 Average Euclidean distance of SNP allele frequencies for each of the five SNP panels. a = 1,000 SNPs; b = 3,000 SNPs; c = 5,000 SNPs; d =
10,000 SNPs; e = 15,708 SNPs. The X-axis represents average Euclidean distance (AED) between SNP allele frequencies, and the y-axis represents
frequencies of SNPs for a given level of AED
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Brahman cattle, and their registration standard was stabi-
lized at pedigree estimated 3/8 Brahman and 5/8 Angus
[31], whereas Santa Gertrudis cattle were also the descen-
dants of 3/8 Brahman cattle and 5/8 Shorthorn [27]. The
fourth major group was the dairy cattle group, which in-
cluded Holstein and Jersey, with their relationship being
the most distant of the four groups. The dairy groups were

more related with western beef cattle and American beef
composites than Japanese beef cattle.

Estimated GBC for Akaushi cattle
Admixture model
Genomic breed composition was estimated for the 198 ani-
mals putatively presented as Akaushi using the five SNP

Fig. 2 Plots of -2logLikelihood for: (a) 198 animals presented as Akaushi (red circles) and (b) 2,423 animals presented as Hereford (green circles),
obtained with assumed true allele frequencies of SNPs for each of the 10 breeds. The blue arrow below the x-axis indicates the cutoff value of
the -2logLikelihood values for data cleaning. Assumed breeds from left to right are: (a) Akaushi, Wagyu, Santa Gertrudis, Beef Master, Holstein,
Brangus, Hereford, Red Angus, Angus, and Jersey; (b) Hereford, Beef Master, Santa Gertrudis, Red Angus, Brangus, Angus, Holstein, Wagyu, Jersey,
and Akaushi

Fig. 3 Hierarchical clustering of 10 cattle breeds based on Euclidean distance of allele frequencies of SNPs on the 1 K SNP panel
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panels based on the admixture model and the linear regres-
sion model, respectively (Table 3). The results obtained
using the admixture model agreed very well among the five
SNP panels, which identified 166 animals with GBC of
Akaushi being equal to 1. Hence, these animals were con-
sidered to be purebred Akaushi cattle. There were 27 ani-
mals with GBCA < 1 based on each of the five panels.
Arguably, animal X167 might still be a purebred Akaushi
cattle (which actually is) because its GBCA ≈ 0.93. Hence,
the mis-classification rate was 0.60% (=1/167) if using
GBCA = 1 as the cutoff. The remaining animals were either
crossbreds between Akaushi cattle or animals from other
beef breeds. It came to our attentions that there were five
animals which had 0% GBCA, which suggested that they
had no Akaushi inheritance. In fact, these five animals were
mixed Red Angus cattle.
For the 198 animals, -2logLikelihood values were com-

puted using the 1 K panel and 16 K panel, respectively,
which correlated very well with each other (Additional
file 3: Figure S3). Based the 1 K panel, for example, the
166 animals with -2logLikelihood < 1.440 were all
assigned to be 100% purebred Akaushi cattle (GBCA =
1), whereas, the remaining crossbreds and non Akaushi
animals had -2logLikelihood > 1.440 (Additional file 7:
Table S2). In general, the larger value of -2logLikelihood
that an animal had, the less likely for it to be a purebred
animal. The results obtained from the likelihood-based
approach agreed well with estimated GBC of individual
animals based on the admixture model.

Linear regression
The results from the linear regression method, however,
showed considerable differences among the five panels. The
numbers of animals with GBCA = 1 increased with the
number of SNPs in the panel (Table 3). If using GBCA = 1
as the cutoff, the number of purebred animals identified by

these panels were 57 (1 K), 125 (3 K), 142 (5 K), 150 (10 K)
and 151 (16 K), respectively. Apparently, the linear regres-
sion model reported less animals with GBCA = 1 than the
admixture model, and the regression approach seemingly
required the use of more SNP in order to give comparable
results to the admixture model. Roughly speaking, animals
with GBCA = 1 identified by the admixture model corre-
sponded to those with GBCA > 0.9 (5 K to 16 K) or
GBCA > 0.8 (1 K and 3 K) based on the linear regression
model. Nevertheless, plots of GBCA obtained using the
admixture model versus those obtained using the linear
regression model showed high correlations (r = 0.953 to
0.992) based on 1 K SNP panel and 16 K SNP panel,
respectively (Fig. 4).

Genomic prediction in Santa Gertrudis cattle
SNP effects were estimated and validated by leave-one
out cross-validation in 1,225 animals with GBCSG
equaled to or greater than 0.90. Predictability of these
SNP effects were also tested in the remaining animals
with GBCSG less than 0.90. The latter were considered
to be cross-bred of Santa Gertrudis cattle, which in-
cluded 25 animals with GBCSG < 0.5. Genomic predic-
tion accuracies on the nine traits ranged from 0.156
(SC) to 0.470 (BW) in the 1,225 GBCSG-validated Santa
Gertrudis cattle (GBCSG ≥0.90). Prediction accuracies
on the nine traits using these SNP effects, however, de-
creased in the other two groups as GBCSG became
smaller, which were between 0.102 (SC) and 0.430 (BW)
when 0.70 ≤ GBCSG < 0.90, and between 0.033 (MARB)
and 0.160 (YW) when 0 ≤ GBCSG < 0.70 (Fig. 5).

Discussion
Selection of reference SNPs and reference animals
Estimation of GBC was evaluated using two statistical
models: admixture model and regression approach.

Table 3 Distribution of genomic breed composition (GBC) of 198 animals presented as Akaushi

Akaushi breed
coefficient

Admixture model Linear Regression model

1 K 3 K 5 K 10 K 16 K 1 K 3 K 5 K 10 K 16 K

=1 166 166 166 166 166 57 125 142 150 151

[0.9, 1.0) 1 1 1 1 0 71 36 24 18 17

[0.8, 0.9) 9 8 9 9 11 41 13 9 7 8

[0.7, 0.8) 4 5 4 4 3 8 4 5 5 4

[0.6, 0.7) 1 0 1 1 1 3 4 1 1 3

[0.5, 0.6) 11 12 11 11 11 6 9 11 11 9

[0.4, 0.5) 0 0 0 0 0 5 1 0 0 0

[0.3, 0.4) 0 0 0 0 0 1 0 0 0 0

[0.2, 0.3) 0 0 0 0 0 0 0 0 0 0

[0.1, 0.2) 1 1 1 1 1 1 1 1 1 1

[0, 0.1) 5 5 5 5 5 5 5 5 5 5

[x,y) = an interval of GBC in which the value is greater than (or equal to) x and less than y
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Selection informative SNPs is not a necessary step for
the regression approach. Often, using high-density SNPs
in the regression approach tends to give more reliable
results, though the computing may take more time.
However, an admixture model directly using high-den-
sity SNPs is highly computational demanding and ineffi-
cient. Thus, it is very necessary to select low-density
panels for estimating GBC. The present results indicated
that SNP panels for estimating GBC were effectively ob-
tained by maximizing AED among breeds, which suc-
cessfully included highly informative SNPs in each of the
four selected panels (Fig. 1a-d). Map view of the five
SNP panels showed that these selected SNPs were lo-
cated on all the 29 autosomes and X chromosome (SNPs
on Y chromosome were not included as candidate
SNPs), but their distributions on each chromosome were
very uneven, in particular, for the 1K – 5K panels (Add-
itional file 2: Figure S2). This result might reflect the
consequences of selection dynamics, either natural or
artificial, and that of genetic drift on the differentiation

of these breeds during the history of adaption and devel-
opment of these breeds, during which their genomes
may have been shuffled considerably.
Selecting (or validation) of reference animals is a ne-

cessary step because these reference animals are sup-
posed to be representative of their respective breeds,
and including cross-bred animals or even animals from
other breeds would mis-lead the conclusion. We
employed a likelihood-based approach to select refer-
ence animals for each breed. Alternatively, outliers can
be identified using a standard deviation approach or
Tukey’s method. The latter was the statistical method
underlying the boxplot in R, which uses interquartile
(IQR) range approach, and outliers are identified as
ranges above or below the 1.5IQR. Validation of these
animals by their pedigrees and breed registry records is
also important when the latter information is available.
In the present study, animals with -2logLikelihood less
than the cutoff value were retained as reference animals
for each breed, because they are more likely to be a

Fig. 4 Plots of genomic breed composition (GBC) of 198 animals presented as Akaushi based on an admixture model versus a linear regression
model: (a) GBC were estimated using 1 K SNP panel; (b) GBC were estimated using 16 K SNP panel
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purebred animal (or an animal which is representative of
each breed). Note that choosing the cutoff value for each
breed is subject to the presence of outliers. Keeping out-
liers leads to high error rates of false positives (i.e., an
animal is identified as a member of a given breed but it
is not). On the other hand, if the exclusion rate is too
stringent (meaning that more animals than crossbreds
are removed), it would bias SNP allele frequencies of a
given population toward another extreme, which in turn
results in higher errors of false negatives (i.e., an animal
is claimed to be not belonging to that population but it
is). Ideally, with good quality data, the percent of elimi-
nated animals is expected to be less than 5%. In the
present studies, the percent of eliminated animals was
generally below 5%, ranging from 0.45% for Hereford to
15.66% for Akaushi. Of the 8,905 registered Holstein an-
imals, for example, 96.4% of these animals had GBC of
Holstein (GBCH) equal to 1, 98.7% had GBCH ≥0.90,
and 99.6% had GBCH ≥0.80. Based the distribution of
their GBCH values, approximately 0.47% of these ani-
mals were identified as outliers and excluded from the
reference group. For the three composite cattle breeds
(Brangus, Beef Master and Santa Gertrudis), though two
founder breeders (Brahman and Shorthorn) were not
present, the three composite breeds could be distin-
guished from each other because they had unique pat-
terns of allele frequencies (and thus their breed
likelihood values) (Additional file 4: Figure S4; Add-
itional file 5: Figure S5; Additional file 6: Figure S6).
Five SNP panels were selected and used in the present

study, which varied from 1K to 16K. Frkonja et al.
(2012), who also used the admixture model, found that a
relatively small number of SNPs (approximately 4000

randomly selected) would suffice to predict breed com-
position [32]. Nevertheless, our results suggested that
the number of SNPs could be much smaller if these
SNPs were optimally selected (data not presented). Po-
tentially, the number of SNPs can be further reduced if
SNPs are pruned to ensure reduced LD. Though search-
ing for minimum SNP panel sizes for estimation GBC is
of interest, this topic was not investigated in the present
study.

Admixture model versus regression approach
Genomic breed composition was estimated for the 198
animals putatively presented as Akaushi using the five
SNP panels based on the admixture model and the lin-
ear regression model, respectively. The two models had
varied to some extent concerning the number of animals
with GBCA = 1. Estimated breed compositions for the
198 animals based on the admixture model agreed very
well among the five SNP panels, which consistently
identified 166 animals with GBC of Akaushi being equal
to 1. However, the results from the linear regression
method showed considerable differences among the five
panels, and the numbers of animals with GBCA = 1 in-
creased with the number of SNPs included in the regres-
sion model. Hence, we expect that the regression model
will give more reliable results using high-density SNPs.
Given low-density SNP panels, the admixture model
yielded more consistent results among the five selected
panels than the linear regression model.
Nevertheless, the admixture model is more computa-

tional intensive, and it had stronger assumptions. Specif-
ically, the admixture model assumes that SNP loci are
independent of each other. This assumption typically

Fig. 5 Plots of genomic prediction accuracies on nine traits in 1424 beef cattle with varying level of genomic breed composition of the Santa
Gertrudis breed (GBCSG). BW = birth weight; WW=weaning weight; HCW = hot carcass weight; MARB =marbling score; MWW=maternal
weaning weight; FAT = fat thickness; REA = ribeye area; SC = Scrotal Circumference; YW = yearling weight; IVA = independent validation on 71
cattle with 0 ≤ GBCSG < 0.70 while SNP effects were estimated from the 1225 animals with GBCSG ≥0.90; IVB independent validation on 128
cattle with 0.70 ≤ GBCSG < 0.90 while SNP effects estimated from the 1225 animals with GBCSG > 0.90; LOOCV = leave-out cross-validation in the
1225 animals with GBCSG ≥0.90
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does not hold with high-density SNPs. A practical way
of reducing LD is to prune SNPs. In the present study,
however, we did not prune SNPs but instead used all se-
lected low-density SNPs which are highly informative of
these population relationships. Use of low-density SNPs
tended to reduce LD considerably. By computing GBC
locus-wise and assuming complete independence of
these the involving SNPs, this type of locus-wise gen-
omic breed composition is well explained by genomic
similarity due to identical by state (IBS), rather than be-
ing identical by descent (IBD). In this sense, computed
GBC can be more precisely described by genomic breed
similarity (GBS). Alternatively, GBC can be computed
considering only alleles located within runs of homozy-
gosity (ROH), which represents IBD more than IBS be-
cause the probability for a large segment of chromosome
to be IBD is high. Arguably, this allowed the use of SNPs
in high LD and computed GBC could be better captured
via the genomic similarity IBD than a random set of
evenly-spaced SNPs, because it tended to give more
weight to SNPs on ROH.

Impact on “down-stream” genomic prediction accuracy
Generally speaking, genomic prediction accuracies on
the nine traits were low, possibly because the accuracies
of EPD were low, and the de-regressed EBV could have
more noise. Our results showed that SNP effects ob-
tained from 1,225 animals with GBCSG equaled to or
greater than 0.90 were more predictable in this same set
of animals per se, as evaluated by leave-one validation,
than the other two sets of animals which were consid-
ered to be crossbreds of Santa Gertrudis animals (Add-
itional file 7: Table S3). Also possibly, animals with very
low GBCSG might not truly be “crosses” of Santa Gertru-
dis, but they could be individual animals in that breed
whose genotypes suggested significant deviations from the
patterns of allele frequencies of that breed, due to genetic
sampling or segregation in the progeny. Nevertheless,
these results suggest that animals differed in estimated
GBC also varied in their genetic architecture of quantita-
tive traits. In a broader sense, estimated SNP effects in
certain breed does not necessarily apply well to animals of
a different breed, and genomic predictions built for pure-
bred animals do not necessarily work well on low percent-
age crosses with that breed. Thus, knowing GBC of
individual animals helps characterize predictability of gen-
omic potential of animals more precisely.
Genomic prediction of crossbred animals is of interest.

This usually requires that a sufficient number of crossbred
animals with genotypes and phenotypes be included in the
training set, which however is often difficult to obtain.
Instead, there were evidences that genomic prediction on
crossbred animals could be improved by taking their
GEBVs to be weighted averages of direct genomic values

computed from SNP effects for each of the pure breeds
and the weights were each animal’s GBC [12]. This is an
application of practical interest, which remains to be fur-
ther investigated in future studies.

Conclusions
Five SNP panels (1 K, 3 K, 5 K, 10 K, and 16 K) were
designed for estimating genomic breed composition in
cattle. The 16 K panel consisted of common, informative
SNPs on five currently available commercial bovine SNP
chips. From the 16 K SNP panel, four smaller SNP panels
(1 K, 3 K, 5 K, and 10 K) were optimally selected by maxi-
mizing AED of allelic frequencies of SNPs among ten cat-
tle breeds. The availability of these selected SNP panels
facilitates breed identification and estimation using cur-
rently available commercial bovine SNP chips without the
need to design new SNP chips or pay extra lab genotyping
cost. These results from the admixture model showed that
the five SNP panels performed very similarly in the esti-
mation of GBC in 198 animals putatively presented as
Akaushi. Overall, our results are highly comparable to ad-
mixture models, e.g., the one proposed by Bansal-Libiger
(2015) and implemented by the iAdmix program, because
we share the same statistical framework. The admixture
model differed from the linear regression approach in
number of animals with purebred coefficient being exactly
equal to 1, but estimated GBC from both methods were
highly correlated (> 90%). Yet, our results did not suggest
that the two methods contradicted with each other, but
that the linear regression approach need to have more ref-
erence SNPs than the admixture model to give compar-
able results.
In view of utility, the 1 K panel is the most cost effect-

ive among the five SNP panels for estimating GBC but
the two larger SNP panels (10 K and 16 K) can be more
robust as an independent LD SNP panel if imputation to
moderate- or high-density SNP genotypes is a necessary
task. The present study did not search for a minimum
number of SNPs for estimating GBC. This was an inter-
esting topic but it was not of direct relevance in the
present study. In the present study, 1 K to 5 K SNPs are
desirable sizes for reliably estimating GBC and they are
convenient to be included as core content for developing
future SNP chips.
Animals with difference in GBC also differed in their

genomic architecture of quantitative traits, which was
the case with 1,424 animals presented as Santa Gertru-
dis, and genomic prediction accuracy of these animals
decreased as the GBC proportion of Santa Gertrudis
decreased. Evidently, pooling animals with drastically dif-
fered GBC profiles could lower genomic prediction accur-
acies of validated (or purebred) animals. How to further
improve genomic prediction of crossbred animals with es-
timated GBC remained to be explored in future studies.
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Finally, estimation of GBC is conducted under the
assumption that all the involving breeds contributed
100% to the genomic breed composition of each animal.
This analysis, however, could be biased when there one
or more ancestry breeds were missing in reality, regard-
less of which statistical models were used.
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